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I GENERALITES SUR LES SYSTEMES LINEAIRES TSI

| Généralités sur les systemes linéaires

Voir l'activité d’introduction sur le ballon de football.

I.L1 Notion de systéeme linéaire

r—@ Définition 1.1.1 (Systéme linéaire))

On appelle systéme linéaire de n équations & p inconnues (z1,...,x,), la donnée simultanée de n
équations linéaires a p inconnues :

a1121 + a1 2%2 + - -+ a1 pTp = by

a2121 + ag2%2 + - - - + ag pTp = by

(5) :

Ap 121 + Ap 222 + -+ + AppTp = by

REMARQUES —

e Les a;; pour (1 <i<n)et(l<j<p)sont les coefficients,

o Les zj pour (1 < k < p) sont les inconnues,

o Les b; pour (1 <i < n) sont les seconds membres.

« Résoudre (5) c’est chercher tous les p-uplets (z1,...,z,) € RP tels que toutes les n égalités formant

le systéme soient satisfaites en méme temps.

Exemple (I1.1.2)

On considere les systemes :
z+y=1 r+y=1 z+y=1
(S):9° "7 (S2) (Ss):
r—y=3 20 +2y =3 20+ 2y =2

Q1 Le couple (0.5;0.5) est-il solution de (S1) ? Résoudre (S1).

Gy

Q2 Le couple (0.5;0.5) est-il solution de (S2) ? Résoudre (S2).
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TSI I GENERALITES SUR LES SYSTEMES LINEAIRES

Q3 Le couple (0.5;0.5) est-il solution de (S3) ? Résoudre (S3).

G3)

On voit au travers de ces exemples que « tout est possible » quand on résout un systeme.

'-(J\ Définition 1.1.3 (Sytéme homogéne associé))

Si (S) est le systeme :
1,121 + a12%2 + - + A1 pTp = by
2,121 + a22%2 + -+ - + A2 pTp = by

(5) :

Gn, 121 + Up 202 TFeoooF An pTp = bn

on appelle systéme homogeéne associé a S le systéeme obtenu en remplacant tous les b; par 0 :

a1,171 +a12T2+ -+ a1 T, =0

a2,171 + a22%T2 + -+ -+ agpTp =0
(So) :

Op,1T1 + Ap2T2 + -+ + QppZy =0

REMARQUES — Il est clair qu'un systéeme homogene admet toujours au moins une solution, laquelle ?

.2 Interprétation géométrique

Pour des valeurs de p et n inférieures a 3, on peut interpreter un systeme comme des intersections de droites
ou de plans. On munit le plan ou I'espace d’un repére. Interpréter chacun des systémes suivants par un ou
des graphiques (envisager toutes les possibilités) :

Olivier BREBANT

Lycée Artaud — 2025/2026




I GENERALITES SUR LES SYSTEMES LINEAIRES TSI

1. Soit (5) : {aa:—i—by =c

by —
2. Soit (5): 4T T avee (a,b) £ (0,0) et (a,b) # (0,0)
de+by=-¢
b —d
3. Soit (§): 4T
dr+by+dz=d

ar+by+cz=d
4. Soit (S) : s dzx+by+dz=d Il y a 5 cas a envisager :
a”ZE—Fb”y—FC”Z — d//
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TSI I GENERALITES SUR LES SYSTEMES LINEAIRES

(D # Exercice Q.l)

1.3 Ecriture matricielle d’un systeme linéaire

Lorsque que 1’on manipule des systémes (pour les résoudre par exemple) on se rend vite compte que 'on
peut souvent se passer d’écrire les inconnues. C’est pourquoi on a introduit une notation matricielle dans
laquelle n’apparait que les coefficients.

"(J\ Définition 1.3.1 (matrice))

Une matrice a n lignes et p colonnes a coefficients dans R ou C est la données de n X p éléments que
I’on répartit dans un tableau a n lignes et p colonnes.
Par exemple 'ensemble des matrices a coefficients dans R est noté .4, ,(R).

REMARQUES — On note parfois une matrice générique de .#, ,(R) par M = (a; ;)1<i<n- 1l est important de
I<y<p
noter que le nombre a; ; se situe dans la matrice a la ligne i (premier indice) et a la colonne j (deuxieme

indice).

B
"(J\ Définition 1.3.2 (Matrice d’un systéme linéaire, et matrice augmentée) J

Considérons un systeme linéaire de n équations a p inconnues :

a1,121 + a12%2 + -+ + a1pTp = by

a1 + a22%2 + - -+ + ag pTp = by

(5) :

Ap1T1 + Ap 2T + + - + GppTp = by

Olivier BREBANT p5 / 17
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I GENERALITES SUR LES SYSTEMES LINEAIRES TSI

La matrice du systéme linéaire (S) est la matrice a n lignes et p colonnes :

(1171 arz ... a17p
azi1 a2 ... 0Aazp
Gp1 Gp2 ... dpp

On définit aussi la matrice augmentée du systéme linéaire la matrice a n lignes et p + 1 colonnes
constituée de la matrice du systeme augmentée des seconds membres :

ailr a2 ... Qip bl
a271 a2’2 coo ag’p b2
ap1 A4p,2 ... Qpp bn
Exemple (1.3.3)
r—2y+3z=1

On considére le systéme suivant : (S) : { 22 — 2z = 2
3r+y—z=-1

Ecrire la matrice augmentée associée au systeéme (.5) :

G

On considére une matrice A = < . Ecrire le systéme d’inconnues x1, 2, ... dont A serait

la matrice augmentée :

REMARQUES — L’introduction des matrices permet 1’écriture d’un systeme sous la forme AX = B ou A, X
et B sont des matrices :

e On verra plus tard dans 'année qu’il est possible de multiplier des matrices entre elles. Ici on se
contentera de voir sur un exemple comment on peut multiplier une matrice M € .#,, par une
matrice colonne C' € ),

— Attention, le nombre de colonnes de A est égal au nombre de lignes de C.

1 2 3 2
Effectuer le produit de A = parC =] 3
4 5 6 1

p6 / 17 Olivier BREBANT
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TSI I GENERALITES SUR LES SYSTEMES LINEAIRES

e On voit donc que le systéme :
a1,1¢1 + a1 222 + -+ a1 Ty = by
() a2171 + agox2 + -+ - + az Ty = by

n1T1 + An2T2 + -+ + GppTp = bn,

peut s’écrire AX = B en notant

ai1 air2 ... G1p T b1

a271 azs ... a27p T2 b2
A=| . . . X=1. B=|.

an1 Gn2 ... Gpp Tp bn,

(D # Exercice Q.Z)

1.4 Opérations élémentaires sur les lignes

Nous allons maintenant décrire des opérations élémentaires que 'on peut réaliser sur les lignes d’un

systéme ou de sa matrice (augmentée) associée. On montrera ensuite que ces opérations donnent un

nouveau systéme qui possede le méme ensemble de solutions.

o Echanger deux lignes L; et L;, opération schématisée par .
e Multiplier une ligne L; par un réel non nul «, schématisée par .

o Ajouter aL; a L;, schématisée par | L; <— L; + aL; ‘

Notons dés maintenant que ces trois types d’opérations sont réversibles :
o L’opération contraire de L; <+ L; est L; <+ L;,
o L’opération contraire de L; < alL; est L; < —L;,
@

o L’opération contraire de L; <— L; + aL; est L; < L; — aL;.

"(J\ Définition 1.4.1 (systémes équivalents))

Deux systémes linéaires (S) et (S’) sont dits équivalents (c’est a dire au sens des opérations élémen-
taires sur les lignes) lorsque l'on passe de I'un & lautre par une suite finie d’opérations élémentaires

sur les lignes. On note alors (S) ~ (57).

Olivier BREBANT
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II ECHELONNEMENT ET ALGORITHME DU PIVOT DE GAUSS-JORDAN TSI

A
"(Propriété I.4.2 (Systéme équivalents) )

Deux systémes équivalents (au sens des opérations élémentaires) ont méme ensemble de solutions.

Exemple (1.4.3)

r=3
y=-2

z+y=1

Montrer que (5) : {2 C3ye0
x+3y=

est équivalent a (S”) {

"(J\ Définition 1.4.4 (Matrices équivalentes par lignes))

Deux matrices A et A’ sont dites équivalentes par lignes lorsqu’elles se déduisent I'une de l’autre par
une suite finie d’opérations élémentaires sur des lignes. On note alors A > A

REMARQUES —

o Si lon passe d'un systéme linéaire (S) & un systéme linéaire (S’) par une suite finie d’opérations
élémentaires sur les lignes alors la matrice augmentée de (S’) s’obtient en effectuant la méme suite
d’opérations élémentaires sur la matrice augmentée de (S) et réciproquement.

e La réciproque évoquée ci-dessus implique que si deux matrices augmentées sont équivalentes par lignes
alors les systémes associés sont équivalents donc ont les méme solutions.

e On a précisé pour les matrices que les opérations se faisaient sur les lignes, car par symétrie on serait

bien tenté de faire des choses analogues sur les colonnes d’une matrice, ce qui n’était pas le cas pour
un systeme. . .

Il Echelonnement et algorithme du pivot de Gauss-Jordan

On a vu jusqu’a présent :
e comment faire évoluer un systéme par des opérations élémentaires sans changer I’ensemble solution,
o comment représenter de fagon plus agréable (avec des matrices) les calculs effectués.

L’objectif de cette section est de voir qu’il est possible automatiser les calculs qui meénent d’un systeme
quelconque a un systéme équivalent dont la résolution est triviale.

p8 / 17 Olivier BREBANT
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TSIt II ECHELONNEMENT ET ALGORITHME DU PIVOT DE GAUSS-JORDAN

Il.L1 Matrices échelonnées par lignes

'-(J\ Définition II.1.1 (matrice échelonnée par ligne))

Une matrice est dite échelonnée par ligne lorsqu’elle vérifie les deux propriétés suivantes :
o si une ligne est nulle alors toutes les lignes suivantes le sont aussi ;

e a partir de la deuxiéme ligne, dans chaque ligne non nulle, le premier coefficient non nul a partir
de la gauche est situé strictement a droite du premier coefficient non nul de la ligne précédente.

On appelle pivot le premier coefficient non nul de chaque ligne non nulle.

REMARQUES — Un schéma valant mieux qu’un long discours, voici a quoi ressemble une matrice échelonnée

par lignes :
e x x * Kk Kk *k *x *
0 0 e x * * % * %
0 0 0 e % * x * * Les e sont les pivots
0 0 OO0 0 0 e % % Les x sont des coefficients quelconques
00 OO 0 0 O0O0 e
00 00 0 0O0OO0OO

Exemple (I1.1.2)

Dire pour chacune des matrices suivantes si elle est échelonnée par ligne et si oui entourer les pivots :

12 -1 Oui  Non 12 -1 Oui Non 20 -13 Oui  Non
01 3 O 0O 00 -1 O 0O 10 2 1 o O
00 —1 01 3 01 2 1
2 -1 1 Oui Non 2 1 -1 3 Oui Non 2 0 -1 3 Oui Non
0 0 0 o O 00 1 2 o O 0O -1 1 4 o O
0o 1 -1 0 0 0 O

'-(J\ Définition II.1.3 (Matrice échelonnée réduite))

Une matrice échelonnée par ligne est dite échelonnée réduite par ligne lorsqu’elle est nulle ou
lorsque :

e tous ses pivots sont égaux a 1;

e ses pivots sont les seuls éléments non nuls de leur colonne.

Exemple (I1.1.4)

Dire pour chacune des matrices suivantes si elle est échelonnée réduite par ligne et si oui entourer les

Olivier BREBANT
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II ECHELONNEMENT ET ALGORITHME DU PIVOT DE GAUSS-JORDAN TSI

pivots :
1 0 -1 3
100 Oui  Non 10 -1 1 Oui Non 0 1 1 2 Oui  Non
01 0 2 O O 0 2 1 2 o O o o
0011 00 0 O 0000
0O 0 0 O
) 10 1 . .
1 2 0 4 Oui Non Oui Non 1 2 1 4 Oui Non
O O 01 2 O 0O o O
00 1 2 00 1 1 00 1 2

(D # Exercice Q.SJ

11.2 Résolution d’un systeme échelonné

Les systemes linéaires dont la matrice augmentée est échelonnée par lignes sont tres facile a résoudre.
Voyons cela sur des exemples :

Exemple (I1.2.1)

Résoudre le systeme (S) dont la matrice augmentée est (elle est échelonnée réduite par ligne) :

10 2 0 4
A=101 2 0 1
00 0 1 2
Méme question avec :
10 2 1
B=101 -1 3
00 0 1

&)

(D # Exercice Q.4)

plO / 17 Olivier BREBANT
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TSIt II ECHELONNEMENT ET ALGORITHME DU PIVOT DE GAUSS-JORDAN

On vient de voir que les systémes échelonnés réduits sont faciles a résoudre. Voyons qu’il est (théorique-
ment et automatiquement) possible d’échelonner (et réduire) n’importe quel systéme avec la méthode du
pivot de Gauss.

1.3 Description de I'algorithme du pivot de Gauss

Le principe de l'algorithme de Gauss-Jordan est de travailler colonne par colonne, de la gauche vers la
droite. Par opérations élémentaires successives sur les lignes, on aboutit & une matrice échelonnée réduite.
Afin de mieux comprendre le fonctionnement de cet algorithme, on va le scinder en deux :

« un premier algorithme va échelonner la matrice ; (Gauss)

« un second la réduira. (Jordan)

I1.3.1 Echelonnement de la matrice

On considére une matrice A = (a; j)1<i<n € Mnp-

1<j<p
Etape 1 : o Sila matrice est vide (0 colonne ou 0 ligne), ou nulle, elle est déja échelonnée et on s’arréte.
0
o Sila premiere colonne est nulle alors A= | | 4/ | et on recommence avec la matrice A’ (que
0

l’on nommera encore A dans la suite mais qui a une colonne de moins),

e Sinon, on passe a I’étape 2.

Etape 2 : Il existe un élément non nul dans la premiére colonne, donc quitte & échanger deux lignes
(opération Ly <» L;), on peut supposer que aj; # 0.

. . , . a;
Etape 3 : a1 étant non nul, on peut effectuer pour toutes les lignes 2 < ¢ < n l'opération L; <— L;— UL Ly
ai,1
ai.1 ‘ *x ok %k
0

qui permet d’obtenir une matrice de la forme . o avec aj 1 # 0 et A’ éventuellement

0
vide.
La matrice A’ posséde une colonne (et une ligne) de moins. On recommence & ’étape 1.

REMARQUES

o Puisque a chaque passage, on diminue soit une colonne (étape 1) soit une colonne et une ligne (étape
3), on est siir que cet algorithme termine. On peut méme dire qu’il y aura au maximum
min(n — 1,p — 1) passages effectués.

e Les opérations effectuées sont des opérations élémentaires sur des lignes, donc la matrice obtenue
en sortie est équivalente par ligne a celle en entrée, et les solutions du systéme associé sont donc
conservées.

Exemple (I1.3.1)

1 2 3 1
Faire fonctionner cet algorithme sur la matrice A= 13 1 4 3
21 3 -2

Olivier BREBANT pll/17
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II ECHELONNEMENT ET ALGORITHME DU PIVOT DE GAUSS-JORDAN TSI

€3

I1.3.2 Réduction de la matrice échelonnée
On va encore procéder par colonne, de gauche a droite :
e S’il n’y a pas de pivot sur la colonne, on ne fait rien, et on passe a la colonne suivante,

e Sinon, supposons que 'on soit sur la colonne j et que le pivot soit en ligne i et qu’il vale a.
On effectue alors :

1
— L; = —L; pour le rendre égal a 1
«o

— pour tout 1 <k <i: Ly < Ly — ay jL; pour annuler tous les coefficients au dessus du pivot.

Exemple (I1.3.2)

Poursuivre la réduction de la matrice A de 'exemple précédent

I1.3.3 Existence et unicité d’une matrice échelonnée réduite par lignes

On vient de voir que 'algorithme de Gauss-Jordan permet & partir d’une matrice A d’obtenir une matrice
équivalente échelonnée réduite par lignes. On admettra 'unicité.

© Théoréme II.3.3)

Toute matrice est équivalente par lignes & une unique matrice échelonnée réduite par lignes.

(D # Exercice Q.5) (D # Exercice Q.GJ

pl2/17 Olivier BREBANT
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TSI III ENSEMBLE DES SOLUTIONS D’UN SYSTEME

Il Ensemble des solutions d’un systeme

Apres avoir détaillé tous ces outils, il est temps de préciser en fonction des diverses situations possibles, a
quoi ressemble I'’ensemble des solutions d’un systeme. . .

I11.1 Vocabulaire

"(J\ Définition III.1.1 (Inconnues principales et secondaires))

On note Ag la matrice (non augmentée, c’est a dire sans le second membre) d’un systéme linéaire (.S)
et Ry sa matrice échelonnée réduite. Alors :

e les inconnues correspondant aux colonnes des pivots de Ry sont appelées inconnues princi-
pales ;

¢ les autres inconnues sont appelées les inconnues secondaires ou parametres.

"(J\ Définition II1.1.2 (Systéme compatible ou incompatible))

En conservant les mémes hypotheses,

o sile systéme (S) admet au moins une solution alors on dit que le systéme est compatible ;

o sile systeme (S) n’admet aucune solution alors on dit que le systéme est incompatible.

Exemple (IT1.1.3)

Dans ’espace muni d’un repere, on considere trois plans d’équations respectives
z+y=1 —-z—-y+z=1 et 204+2y—2=0

Déterminer 'intersection de ces 3 trois plans.

&5

I11.2 Structure de I'’ensemble des solutions

Synthétisons tous les résultats vus précédemment :

& Définition I1L.2.1 (rang)]

e On appelle rang d’une matrice A, et on note rg(A), le nombre de pivots de la matrice éche-

Olivier BREBANT pl3/17
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lonnée (réduite).

e On appelle rang du systéme (.5), et on note rg(.S), le nombre de pivots (nombre d’inconnues
principales) de la matrice échelonnée réduite du systéeme homogeéne associé (attention !).

"(Propriété 111.2.2)

Le rang étant le nombre de pivots, on a : rg(S) < min(n,p).

"(Propriété 111.2.3}

Soit A la matrice augmentée d’un systéme linéaire (S) & p inconnues et R sa matrice échelonnée réduite
par lignes.

o Si R contient la ligne [0...0 1] alors (S5) est incompatible.
e Sinon :

— ¢'il n’y a que des inconnues principales (rg(S) = p) alors (S) admet une unique solution.

— §’il y a au moins une inconnue secondaire alors (S) admet une infinité de solutions.

On peut conclure sur la structure des solutions d’un systéme par la propriété admise ici :

"(Propriété III.2.4}

Soit (S) un systeme linéaire et (Sp) le systeme homogene associé.
Si X, € RP est une solution particuliere de (5), alors en notant . I'ensemble des solutions de (5) et
o Pensemble des solutions de (Sp) on a :

yZ{Xp-f—XH, XHEyQ}:Xp-f—yo

REMARQUES — cela n’est pas sans vous rappeler quelque chose du chapitre sur les équations différentielles. . .

(D # Exercice Q.7) (D # Exercice Q.S) (D # Exercice Q.Q)

IV  Famille de vecteurs de R"

IV.1 Combinaison linéaire
REMARQUES —
e on appellera vecteurs de R" les n-uplets de réels.

e on parlera de vecteurs, mais on omettra toutes les fleches pour alléger les notations. Il faudra faire
attention a distinguer les wvecteurs des scalaires.

'-@ Définition IV.1.1)

Soit p € N* et .# = {uy, ..., u,} une famille de p vecteurs de R".

e Une combinaison linéaire de vecteurs de .%# est un vecteur de la forme :

Atur + - -+ Apuy avec Aq, ... A, des scalaires.

pl4/17 Olivier BREBANT
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TSI IV. FAMILLE DE VECTEURS DE R"

l o L’ensemble des combinaisons linéaires des vecteurs de .# se note Vect(%). J

(D # Exercice Q.lO) (D # Exercice Q.ll)

IV.2 Familles libres et familles liées

"(J\ Définition IV.2.1)

Soit p € N* et # = {uy,...,u,} une famille de p vecteurs de R".

e On dit qu'une famille .% est libre lorsque la seule combinaison linéaire nulle de vecteurs de .
est celle dont tous les coefficients sont nuls :

Mur 4+ Xpup, =0 = Vie[l;p], y=0
(on dit aussi que les vecteurs de .# sont linéairement indépendants.)

e Une famille qui n’est pas libre est dite liée.

METHODE — Pour montrer si une famille # = (uq, ..., up) est libre ou liée on résout le systeme (& n lignes)
dont les inconnues sont les Aq,..., A, :

)\1U1+"'—|—)\p’up:0

Ce systéme est toujours compatible puisque le p-uplet (0,...,0) est toujours solution. La famille est libre
si et seulement si ce p-uplet nul est la seule solution du systeme.

D’apres les sections précédentes sur la résolution des systéme on peut mettre en évidence la propriété
suivante :

'—(Propriété IV.2.2}

Soit p € N* et {uy,...,up} une famille de vecteurs de R™. Soit A la matrice de taille (n,p) dont les

colonnes sont constituées des coordonnées des vecteurs ug, ..., u,. Il y a équivalence entre:
o La famille {ui,...,u,} est libre.
o Le systéeme AX = 0 a pour seule solution la solution triviale (0,...,0) € RP.

¢ Le nombre de pivots de A est p.

e rg(A)=p

REMARQUES — Sip > n alors la famille {uy,...,u,} ne peut pas étre libre dans R" car on a les inégalités :

rg(A) < min(n,p) < p

(D # Exercice Q.12)

IV.3 Familles génératrices

& Définition IV.3.1)

Soit .# = {ui,...,up} une famille de p vecteurs de R”. On dit que .# est génératrice de R" lorsque

Olivier BREBANT pl5/17
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IV FAMILLE DE VECTEURS DE R" TSI

Vect(#) =R", c’est a dire :

Yu € R™, H(Al,...)\p)GRp, )\1u1—|—-~~—|—)\pup:u

p16 / 17 Olivier BREBANT
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TSI IV. FAMILLE DE VECTEURS DE R"

F(@ Théoréme IV.3.2J

Soit p € N* et {uy,...,up} une famille de vecteurs de R™. Soit A la matrice de taille (n,p) dont les
colonnes sont constituées des coordonnées des vecteurs u, ..., u,. Il y a équivalence entre:

o La famille {uy,...,u,} est génératrice de R™.

o Pour toute matrice colonne B € ., 1(R), le systéme AX = B est compatible,

« r9(A) =n
REMARQUES — Si p < n alors la famille {u;,...,u,} ne peut pas étre génératrice dans R" car on a les
inégalités :

rg(A) < min(n,p) <n

(D # Exercice Q.13)

IV.4 Forme explicite, forme implicite

On a vu qu’une famille de vecteurs .# = {uy, ..., u,} engendrait un espace F' = Vect(uy, ...,up). Cet espace
est ainsi déterminé par une expression explicite (c’est & dire par une équation paramétrique). Parfois ce
méme espace peut étre défini de manieére implicite (c’est a dire par une équation cartésienne). Il est utile,
comme en géométrie de savoir passer d’une expression a ’autre.

Voyons cela via les exercices :

(D # Exercice Q.14) (D # Exercice Q.15)
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