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I GÉNÉRALITÉS SUR LES SYSTÈMES LINÉAIRES TSI1

I Généralités sur les systèmes linéaires
Voir l’activité d’introduction sur le ballon de football.

I.1 Notion de système linéaire
♪ Définition I.1.1 (Système linéaire)

On appelle système linéaire de n équations à p inconnues (x1, . . . , xp), la donnée simultanée de n
équations linéaires à p inconnues :

(S) :



a1,1x1 + a1,2x2 + · · ·+ a1,pxp = b1

a2,1x1 + a2,2x2 + · · ·+ a2,pxp = b2
...

an,1x1 + an,2x2 + · · ·+ an,pxp = bn

Remarques –

• Les ai,j pour (1 ⩽ i ⩽ n) et (1 ⩽ j ⩽ p) sont les coefficients,

• Les xk pour (1 ⩽ k ⩽ p) sont les inconnues,

• Les bi pour (1 ⩽ i ⩽ n) sont les seconds membres.

• Résoudre (S) c’est chercher tous les p-uplets (x1, . . . , xp) ∈ Rp tels que toutes les n égalités formant
le système soient satisfaites en même temps.

Exemple (I.1.2)

On considère les systèmes :

(S1) :
{

x + y = 1
x− y = 3

(S2) :
{

x + y = 1
2x + 2y = 3

(S3) :
{

x + y = 1
2x + 2y = 2

Q 1 Le couple (0.5 ; 0.5) est-il solution de (S1) ? Résoudre (S1).

S1

Q 2 Le couple (0.5 ; 0.5) est-il solution de (S2) ? Résoudre (S2).
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S2

Q 3 Le couple (0.5 ; 0.5) est-il solution de (S3) ? Résoudre (S3).

S3

On voit au travers de ces exemples que « tout est possible » quand on résout un système.

♪ Définition I.1.3 (Sytème homogène associé)

Si (S) est le système :

(S) :



a1,1x1 + a1,2x2 + · · ·+ a1,pxp = b1

a2,1x1 + a2,2x2 + · · ·+ a2,pxp = b2
...

an,1x1 + an,2x2 + · · ·+ an,pxp = bn

on appelle système homogène associé à S le système obtenu en remplaçant tous les bi par 0 :

(S0) :



a1,1x1 + a1,2x2 + · · ·+ a1,pxp = 0
a2,1x1 + a2,2x2 + · · ·+ a2,pxp = 0

...
an,1x1 + an,2x2 + · · ·+ an,pxp = 0

Remarques – Il est clair qu’un système homogène admet toujours au moins une solution, laquelle ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I.2 Interprétation géométrique

Pour des valeurs de p et n inférieures à 3, on peut interpreter un système comme des intersections de droites
ou de plans. On munit le plan ou l’espace d’un repère. Interpréter chacun des systèmes suivants par un ou
des graphiques (envisager toutes les possibilités) :

Olivier BRÉBANT
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1. Soit (S) :
{

ax + by = c

S4

2. Soit (S) :
{

ax + by = c

a′x + b′y = c′ avec (a, b) ̸= (0, 0) et (a, b′) ̸= (0, 0)

S5

3. Soit (S) :
{

ax + by + cz = d

a′x + b′y + c′z = d′

S6

4. Soit (S) :


ax + by + cz = d

a′x + b′y + c′z = d′

a′′x + b′′y + c′′z = d′′
Il y a 5 cas à envisager :
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□ ✍ Exercice Q.1

I.3 Écriture matricielle d’un système linéaire
Lorsque que l’on manipule des systèmes (pour les résoudre par exemple) on se rend vite compte que l’on
peut souvent se passer d’écrire les inconnues. C’est pourquoi on a introduit une notation matricielle dans
laquelle n’apparaît que les coefficients.

♪ Définition I.3.1 (matrice)

Une matrice à n lignes et p colonnes à coefficients dans R ou C est la données de n× p éléments que
l’on répartit dans un tableau à n lignes et p colonnes.
Par exemple l’ensemble des matrices à coefficients dans R est noté Mn,p(R).

Remarques – On note parfois une matrice générique de Mn,p(R) par M = (ai,j)1⩽i⩽n
1⩽j⩽p

. Il est important de

noter que le nombre ai,j se situe dans la matrice à la ligne i (premier indice) et à la colonne j (deuxième
indice).

♪ Définition I.3.2 (Matrice d’un système linéaire, et matrice augmentée)

Considérons un système linéaire de n équations à p inconnues :

(S) :



a1,1x1 + a1,2x2 + · · ·+ a1,pxp = b1

a2,1x1 + a2,2x2 + · · ·+ a2,pxp = b2
...

an,1x1 + an,2x2 + · · ·+ an,pxp = bn

Olivier BRÉBANT
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La matrice du système linéaire (S) est la matrice à n lignes et p colonnes :
a1,1 a1,2 . . . a1,p

a2,1 a2,2 . . . a2,p
...

...
...

an,1 an,2 . . . an,p


On définit aussi la matrice augmentée du système linéaire la matrice à n lignes et p + 1 colonnes
constituée de la matrice du système augmentée des seconds membres :

a1,1 a1,2 . . . a1,p b1
a2,1 a2,2 . . . a2,p b2

...
...

...
...

an,1 an,2 . . . an,p bn



Exemple (I.3.3)

On considère le système suivant : (S) :


x− 2y + 3z = 1
2x− z = 2
3x + y − z = −1

.

Écrire la matrice augmentée associée au système (S) :

S7

On considère une matrice A =
(

2 3 1 1
4 −1 0 1

)
. Écrire le système d’inconnues x1, x2, . . . dont A serait

la matrice augmentée :

S8

Remarques – L’introduction des matrices permet l’écriture d’un système sous la forme AX = B où A, X
et B sont des matrices :

• On verra plus tard dans l’année qu’il est possible de multiplier des matrices entre elles. Ici on se
contentera de voir sur un exemple comment on peut multiplier une matrice M ∈ Mn,p par une
matrice colonne C ∈Mp,1
→ Attention, le nombre de colonnes de A est égal au nombre de lignes de C.

Effectuer le produit de A =
(

1 2 3
4 5 6

)
par C =

 2
3
−1

 :

p6/17 Olivier BRÉBANT
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S9

• On voit donc que le système :

(S) :



a1,1x1 + a1,2x2 + · · ·+ a1,pxp = b1

a2,1x1 + a2,2x2 + · · ·+ a2,pxp = b2
...

an,1x1 + an,2x2 + · · ·+ an,pxp = bn

peut s’écrire AX = B en notant

A =


a1,1 a1,2 . . . a1,p

a2,1 a2,2 . . . a2,p
...

...
...

an,1 an,2 . . . an,p

 X =


x1
x2
...

xp

 B =


b1
b2
...

bn


□ ✍ Exercice Q.2

I.4 Opérations élémentaires sur les lignes
Nous allons maintenant décrire des opérations élémentaires que l’on peut réaliser sur les lignes d’un
système ou de sa matrice (augmentée) associée. On montrera ensuite que ces opérations donnent un
nouveau système qui possède le même ensemble de solutions.

• Échanger deux lignes Li et Lj , opération schématisée par Li ↔ Lj .

• Multiplier une ligne Li par un réel non nul α, schématisée par Li ← αLi .

• Ajouter αLj à Li, schématisée par Li ← Li + αLj .

Notons dès maintenant que ces trois types d’opérations sont réversibles :

• L’opération contraire de Li ↔ Lj est Lj ↔ Li,

• L’opération contraire de Li ← αLi est Li ←
1
α

Li,

• L’opération contraire de Li ← Li + αLj est Li ← Li − αLj .

♪ Définition I.4.1 (systèmes équivalents)

Deux systèmes linéaires (S) et (S′) sont dits équivalents (c’est à dire au sens des opérations élémen-
taires sur les lignes) lorsque l’on passe de l’un à l’autre par une suite finie d’opérations élémentaires
sur les lignes. On note alors (S) ∼ (S′).

Olivier BRÉBANT
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Propriété I.4.2 (Système équivalents)

Deux systèmes équivalents (au sens des opérations élémentaires) ont même ensemble de solutions.

Exemple (I.4.3)

Montrer que (S) :
{

x + y = 1
2x + 3y = 0

est équivalent à (S′)
{

x = 3
y = −2

S10

♪ Définition I.4.4 (Matrices équivalentes par lignes)

Deux matrices A et A′ sont dites équivalentes par lignes lorsqu’elles se déduisent l’une de l’autre par
une suite finie d’opérations élémentaires sur des lignes. On note alors A ∼

L
A′.

Remarques –

• Si l’on passe d’un système linéaire (S) à un système linéaire (S′) par une suite finie d’opérations
élémentaires sur les lignes alors la matrice augmentée de (S′) s’obtient en effectuant la même suite
d’opérations élémentaires sur la matrice augmentée de (S) et réciproquement.

• La réciproque évoquée ci-dessus implique que si deux matrices augmentées sont équivalentes par lignes
alors les systèmes associés sont équivalents donc ont les même solutions.

• On a précisé pour les matrices que les opérations se faisaient sur les lignes, car par symétrie on serait
bien tenté de faire des choses analogues sur les colonnes d’une matrice, ce qui n’était pas le cas pour
un système. . .

II Échelonnement et algorithme du pivot de Gauss-Jordan
On a vu jusqu’à présent :

• comment faire évoluer un système par des opérations élémentaires sans changer l’ensemble solution,

• comment représenter de façon plus agréable (avec des matrices) les calculs effectués.

L’objectif de cette section est de voir qu’il est possible automatiser les calculs qui mènent d’un système
quelconque à un système équivalent dont la résolution est triviale.

p8/17 Olivier BRÉBANT
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II.1 Matrices échelonnées par lignes
♪ Définition II.1.1 (matrice échelonnée par ligne)

Une matrice est dite échelonnée par ligne lorsqu’elle vérifie les deux propriétés suivantes :

• si une ligne est nulle alors toutes les lignes suivantes le sont aussi ;

• à partir de la deuxième ligne, dans chaque ligne non nulle, le premier coefficient non nul à partir
de la gauche est situé strictement à droite du premier coefficient non nul de la ligne précédente.

On appelle pivot le premier coefficient non nul de chaque ligne non nulle.

Remarques – Un schéma valant mieux qu’un long discours, voici à quoi ressemble une matrice échelonnée
par lignes : 

• ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 0 • ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 0 0 • ⋆ ⋆ ⋆ ⋆ ⋆
0 0 0 0 0 0 • ⋆ ⋆
0 0 0 0 0 0 0 0 •
0 0 0 0 0 0 0 0 0


Les • sont les pivots
Les ⋆ sont des coefficients quelconques

Exemple (II.1.2)

Dire pour chacune des matrices suivantes si elle est échelonnée par ligne et si oui entourer les pivots :1 2 −1
0 1 3
0 0 −1

 Oui
□

Non
□

1 2 −1
0 0 −1
0 1 3

 Oui
□

Non
□

2 0 −1 3
1 0 2 1
0 1 2 1

 Oui
□

Non
□2 −1 1

0 0 0
0 1 −1

 Oui
□

Non
□

(
2 1 −1 3
0 0 1 2

)
Oui
□

Non
□

2 0 −1 3
0 −1 1 4
0 0 0 0

 Oui
□

Non
□

♪ Définition II.1.3 (Matrice échelonnée réduite)

Une matrice échelonnée par ligne est dite échelonnée réduite par ligne lorsqu’elle est nulle ou
lorsque :

• tous ses pivots sont égaux à 1;

• ses pivots sont les seuls éléments non nuls de leur colonne.

Exemple (II.1.4)

Dire pour chacune des matrices suivantes si elle est échelonnée réduite par ligne et si oui entourer les

Olivier BRÉBANT
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pivots :

1 0 0 1
0 1 0 2
0 0 1 1

 Oui
□

Non
□

1 0 −1 1
0 2 1 2
0 0 0 0

 Oui
□

Non
□


1 0 −1 3
0 1 1 2
0 0 0 0
0 0 0 0

 Oui
□

Non
□

(
1 2 0 4
0 0 1 2

)
Oui
□

Non
□

1 0 1 1
0 1 0 2
0 0 1 1

 Oui
□

Non
□

(
1 2 1 4
0 0 1 2

)
Oui
□

Non
□

□ ✍ Exercice Q.3

II.2 Résolution d’un système échelonné
Les systèmes linéaires dont la matrice augmentée est échelonnée par lignes sont très facile à résoudre.
Voyons cela sur des exemples :

Exemple (II.2.1)

Résoudre le système (S) dont la matrice augmentée est (elle est échelonnée réduite par ligne) :

A =

1 0 2 0 4
0 1 2 0 1
0 0 0 1 2



S11

Même question avec :

B =

1 0 2 1
0 1 −1 3
0 0 0 1


S12

□ ✍ Exercice Q.4

p10/17 Olivier BRÉBANT
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On vient de voir que les systèmes échelonnés réduits sont faciles à résoudre. Voyons qu’il est (théorique-
ment et automatiquement) possible d’échelonner (et réduire) n’importe quel système avec la méthode du
pivot de Gauss.

II.3 Description de l’algorithme du pivot de Gauss
Le principe de l’algorithme de Gauss-Jordan est de travailler colonne par colonne, de la gauche vers la
droite. Par opérations élémentaires successives sur les lignes, on aboutit à une matrice échelonnée réduite.
Afin de mieux comprendre le fonctionnement de cet algorithme, on va le scinder en deux :

• un premier algorithme va échelonner la matrice ; (Gauss)

• un second la réduira. (Jordan)

II.3.1 Échelonnement de la matrice

On considère une matrice A = (ai,j)1⩽i⩽n
1⩽j⩽p

∈Mn,p.

Étape 1 : • Si la matrice est vide (0 colonne ou 0 ligne), ou nulle, elle est déjà échelonnée et on s’arrête.

• Si la première colonne est nulle alors A =

 0
... A′

0

 et on recommence avec la matrice A′ (que

l’on nommera encore A dans la suite mais qui a une colonne de moins),
• Sinon, on passe à l’étape 2.

Étape 2 : Il existe un élément non nul dans la première colonne, donc quitte à échanger deux lignes
(opération L1 ↔ Li), on peut supposer que a1,1 ̸= 0.

Étape 3 : a1,1 étant non nul, on peut effectuer pour toutes les lignes 2 ⩽ i ⩽ n l’opération Li ← Li−
ai,1
a1,1

L1

qui permet d’obtenir une matrice de la forme


a1,1 ⋆ ⋆ ⋆

0
... A′

0

 avec a1,1 ̸= 0 et A′ éventuellement

vide.
La matrice A′ possède une colonne (et une ligne) de moins. On recommence à l’étape 1.

Remarques –

• Puisque à chaque passage, on diminue soit une colonne (étape 1) soit une colonne et une ligne (étape
3), on est sûr que cet algorithme termine. On peut même dire qu’il y aura au maximum
min(n− 1, p− 1) passages effectués.

• Les opérations effectuées sont des opérations élémentaires sur des lignes, donc la matrice obtenue
en sortie est équivalente par ligne à celle en entrée, et les solutions du système associé sont donc
conservées.

Exemple (II.3.1)

Faire fonctionner cet algorithme sur la matrice A =

1 2 3 1
3 1 4 3
2 1 3 −2



Olivier BRÉBANT
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S13

II.3.2 Réduction de la matrice échelonnée

On va encore procéder par colonne, de gauche à droite :

• S’il n’y a pas de pivot sur la colonne, on ne fait rien, et on passe à la colonne suivante,

• Sinon, supposons que l’on soit sur la colonne j et que le pivot soit en ligne i et qu’il vale α.
On effectue alors :

– Li = 1
α

Li pour le rendre égal à 1

– pour tout 1 ⩽ k < i : Lk ← Lk − ak,jLi pour annuler tous les coefficients au dessus du pivot.

Exemple (II.3.2)

Poursuivre la réduction de la matrice A de l’exemple précédent

S14

II.3.3 Existence et unicité d’une matrice échelonnée réduite par lignes

On vient de voir que l’algorithme de Gauss-Jordan permet à partir d’une matrice A d’obtenir une matrice
équivalente échelonnée réduite par lignes. On admettra l’unicité.

© Théorème II.3.3

Toute matrice est équivalente par lignes à une unique matrice échelonnée réduite par lignes.

□ ✍ Exercice Q.5 □ ✍ Exercice Q.6
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III Ensemble des solutions d’un système
Après avoir détaillé tous ces outils, il est temps de préciser en fonction des diverses situations possibles, à
quoi ressemble l’ensemble des solutions d’un système. . .

III.1 Vocabulaire
♪ Définition III.1.1 (Inconnues principales et secondaires)

On note A0 la matrice (non augmentée, c’est à dire sans le second membre) d’un système linéaire (S)
et R0 sa matrice échelonnée réduite. Alors :

• les inconnues correspondant aux colonnes des pivots de R0 sont appelées inconnues princi-
pales ;

• les autres inconnues sont appelées les inconnues secondaires ou paramètres.

♪ Définition III.1.2 (Système compatible ou incompatible)

En conservant les mêmes hypothèses,

• si le système (S) admet au moins une solution alors on dit que le système est compatible ;

• si le système (S) n’admet aucune solution alors on dit que le système est incompatible.

Exemple (III.1.3)

Dans l’espace muni d’un repère, on considère trois plans d’équations respectives

x + y = 1, −x− y + z = 1 et 2x + 2y − z = 0

Déterminer l’intersection de ces 3 trois plans.

S15

III.2 Structure de l’ensemble des solutions
Synthétisons tous les résultats vus précédemment :

♪ Définition III.2.1 (rang)

• On appelle rang d’une matrice A, et on note rg(A), le nombre de pivots de la matrice éche-
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lonnée (réduite).

• On appelle rang du système (S), et on note rg(S), le nombre de pivots (nombre d’inconnues
principales) de la matrice échelonnée réduite du système homogène associé (attention !).

Propriété III.2.2

Le rang étant le nombre de pivots, on a : rg(S) ⩽ min(n, p).

Propriété III.2.3

Soit A la matrice augmentée d’un système linéaire (S) à p inconnues et R sa matrice échelonnée réduite
par lignes.

• Si R contient la ligne [0 . . . 0 1] alors (S) est incompatible.

• Sinon :

– s’il n’y a que des inconnues principales (rg(S) = p) alors (S) admet une unique solution.
– s’il y a au moins une inconnue secondaire alors (S) admet une infinité de solutions.

On peut conclure sur la structure des solutions d’un système par la propriété admise ici :

Propriété III.2.4

Soit (S) un système linéaire et (S0) le système homogène associé.
Si Xp ∈ Rp est une solution particulière de (S), alors en notant S l’ensemble des solutions de (S) et
S0 l’ensemble des solutions de (S0) on a :

S = {Xp + XH , XH ∈ S0} = Xp + S0

Remarques – cela n’est pas sans vous rappeler quelque chose du chapitre sur les équations différentielles. . .

□ ✍ Exercice Q.7 □ ✍ Exercice Q.8 □ ✍ Exercice Q.9

IV Famille de vecteurs de Rn

IV.1 Combinaison linéaire
Remarques –

• on appellera vecteurs de Rn les n-uplets de réels.

• on parlera de vecteurs, mais on omettra toutes les flèches pour alléger les notations. Il faudra faire
attention à distinguer les vecteurs des scalaires.

♪ Définition IV.1.1

Soit p ∈ N∗ et F = {u1, ..., up} une famille de p vecteurs de Rn.

• Une combinaison linéaire de vecteurs de F est un vecteur de la forme :

λ1u1 + · · ·+ λpup avec λ1, . . . λp des scalaires.
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• L’ensemble des combinaisons linéaires des vecteurs de F se note V ect(F ).

□ ✍ Exercice Q.10 □ ✍ Exercice Q.11

IV.2 Familles libres et familles liées
♪ Définition IV.2.1

Soit p ∈ N∗ et F = {u1, ..., up} une famille de p vecteurs de Rn.

• On dit qu’une famille F est libre lorsque la seule combinaison linéaire nulle de vecteurs de F
est celle dont tous les coefficients sont nuls :

λ1u1 + · · ·+ λpup = 0 =⇒ ∀i ∈ J1 ; pK, λi = 0

(on dit aussi que les vecteurs de F sont linéairement indépendants.)

• Une famille qui n’est pas libre est dite liée.

Méthode – Pour montrer si une famille F = (u1, . . . , up) est libre ou liée on résout le système (à n lignes)
dont les inconnues sont les λ1, . . . , λp :

λ1u1 + · · ·+ λpup = 0

Ce système est toujours compatible puisque le p-uplet (0, . . . , 0) est toujours solution. La famille est libre
si et seulement si ce p-uplet nul est la seule solution du système.
D’après les sections précédentes sur la résolution des système on peut mettre en évidence la propriété
suivante :

Propriété IV.2.2

Soit p ∈ N∗ et {u1, . . . , up} une famille de vecteurs de Rn. Soit A la matrice de taille (n, p) dont les
colonnes sont constituées des coordonnées des vecteurs u1, . . . , up. Il y a équivalence entre:

• La famille {u1, . . . , up} est libre.

• Le système AX = 0 a pour seule solution la solution triviale (0, . . . , 0) ∈ Rp.

• Le nombre de pivots de A est p.

• rg(A) = p

Remarques – Si p > n alors la famille {u1, . . . , up} ne peut pas être libre dans Rn car on a les inégalités :

rg(A) ⩽ min(n, p) < p

□ ✍ Exercice Q.12

IV.3 Familles génératrices
♪ Définition IV.3.1

Soit F = {u1, . . . , up} une famille de p vecteurs de Rn. On dit que F est génératrice de Rn lorsque
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V ect(F ) = Rn, c’est à dire :

∀u ∈ Rn, ∃(λ1, . . . λp) ∈ Rp, λ1u1 + · · ·+ λpup = u
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© Théorème IV.3.2

Soit p ∈ N∗ et {u1, . . . , up} une famille de vecteurs de Rn. Soit A la matrice de taille (n, p) dont les
colonnes sont constituées des coordonnées des vecteurs u1, . . . , up. Il y a équivalence entre:

• La famille {u1, . . . , up} est génératrice de Rn.

• Pour toute matrice colonne B ∈Mn,1(R), le système AX = B est compatible,

• rg(A) = n

Remarques – Si p < n alors la famille {u1, . . . , up} ne peut pas être génératrice dans Rn car on a les
inégalités :

rg(A) ⩽ min(n, p) < n

□ ✍ Exercice Q.13

IV.4 Forme explicite, forme implicite
On a vu qu’une famille de vecteurs F = {u1, ..., up} engendrait un espace F = V ect(u1, ..., up). Cet espace
est ainsi déterminé par une expression explicite (c’est à dire par une équation paramétrique). Parfois ce
même espace peut être défini de manière implicite (c’est à dire par une équation cartésienne). Il est utile,
comme en géométrie de savoir passer d’une expression à l’autre.

Voyons cela via les exercices :

□ ✍ Exercice Q.14 □ ✍ Exercice Q.15
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