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Équations différentielles

Le but de ce chapitre est de résoudre des équations différentielles d’ordre 1 et 2 à coefficients constants.
Sauf mention explicite du contraire, les fonctions utilisées seront définies sur un intervalle de R.
On va commencer dans la première section à donner quelques rappels sur les notions d’intégrales et de
primitives et s’entraîner à calculer des primitives avant de s’attaquer à des équations différentielles plus
complètes.
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I PRIMITIVES ET INTÉGRALES SUR UN SEGMENT TSI1

I Primitives et intégrales sur un segment

I.1 Primitives
♪ Définition I.1.1 (Primitive)

Soit I un intervalle de R, et f : I → R une fonction. On dit que F est une primitive de f sur I si F
est dérivable et si F ′ = f .

Exemple (I.1.2)

Donner des primitives des fonctions f(x) = x2

2 et g(x) = 1
x en précisant sur quels intervalles elles sont

valables :
S1

Remarques –

• On notera
∫

f(x) dx une primitive quelconque de f .

• Il n’y a jamais unicité d’une primitive car si F est une primitive de f alors quel que soit c ∈ R, F + c
est aussi une primitive de f . Mais on retiendra la propriété suivante :

Propriété I.1.3

Soit I un intervalle de R, et f une fonction définie sur I. Si F est une primitive de f sur I alors les
primitives de f sont les fonctions F + λ, avec λ ∈ R.

Cela signifie que sous réserve d’existence, il y a unicité des primitives à une constante additive près.

Propriété I.1.4 (Linéarité)

Soit I un intervalle de R, et f et g deux fonctions définies sur I.

• Si F est une primitive de f et G une primitive de g, alors F + G est une primitive de f + g.

• Si F est une primitive de f et λ ∈ R, alors λF est une primitive de λf .

Remarques –

• Attention, contrairement à la dérivation, il n’y a pas de formule directe permettant de primitiver un
produit, un quotient ou une composée (ne pas essayer d’inventer une règle, elle sera probablement
fausse !). Toutefois on verra plus tard la notion d’intégration par partie qui s’en approche.

• Cela explique que le calcul de primitives soit plus difficile que le calcul de dérivées (un peu comme
factoriser est plus difficile que développer).
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TSI1 I PRIMITIVES ET INTÉGRALES SUR UN SEGMENT

• La recherche de primitive est tellement délicate, que parfois elle peut ne pas aboutir. Pour être un
peu plus précis, il existe des fonctions s’exprimant à l’aide de fonctions usuelles, dont les primitives
(qui pourtant existent) ne peuvent pas s’écrire explicitement à l’aide de fonctions usuelles (c’est le cas
par exemple de la fonction classique x 7→ e−x2).

• Pour espérer pouvoir calculer des primitives il est impératif de connaître les primitives des fonctions
usuelles (ou à minima savoir lire parfaitement le tableau des dérivées usuelles à l’envers. . . ). Ensuite
on essaye de s’y ramener par quelques transformations algébriques.

L’intervalle I = f(x) = Primitives F (x) =

R k kx + C

R x 1
2x2 + C

R ax + b a
2 x2 + bx + C

R xn(n ⩾ 0) 1
n + 1xn+1 + C

]0, +∞[ ou ]−∞, 0[ 1
x2 − 1

x
+ C

]0, +∞[ ou ]−∞, 0[ 1
xn

(n ⩾ 2) − 1
n − 1

1
xn−1 + C

]0, +∞[ ou ]−∞, 0[ 1
x

ln |x| + C

]0, +∞[ 1√
x

2
√

x + C

R ex ex + C

R sin x − cos x + C

R cos x sin x + C

R
1

1 + x2 arctan x + C

Exemple (I.1.5)

Déterminer les primitives des fonctions f(x) = x3 − 4
x2 , g(x) = 4 cos(x) + 3 sin(2x), et h(x) = e3x+1.

S2
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I PRIMITIVES ET INTÉGRALES SUR UN SEGMENT TSI1

En pratique on essayera de repérer les fonctions de la forme :

Condition sur u f(x) = Primitives F (x) =

u′un (n ∈ N) 1
n+1un+1 + C

Pour tout x ∈ I, u(x) ̸= 0 u′

u2 − 1
u

+ C

Pour tout x ∈ I, u(x) ̸= 0 u′

un
(n ⩾ 2) − 1

n − 1
1

un−1 + C

Pour tout x ∈ I, u(x) ̸= 0 u′

u
ln |u| + C

Pour tout x ∈ I, u(x) > 0 u′
√

u
2
√

u + C

u′eu eu + C

u′

1 + u2 arctan u + C

u′ × (v′ ◦ u) v ◦ u + C

I.2 Approche géométrique de la notion d’intégrale sur un segment
La définition rigoureuse d’intégrale d’une fonction sur un segment viendra au second semestre. Pour
l’instant on se contente d’utiliser la notion intuitive d’aire.

♪ Définition I.2.1 (intuitive)

• Si f est une fonction continue et positive définie sur un intervalle [a ; b] alors intuitivement
l’intégrale de f sur [a ; b] est l’aire du domaine D délimité par la courbe de f , l’axe horizontal et
les deux droites verticales d’équations x = a et x = b. On la note :∫ b

a
f(x)dx

• Si f est une fonction continue et négative sur [a ; b] alors :
∫ b

a
f(x)dx = −aire(D)

• Si f est continue et de signe quelconque, alors on découpe l’intervalle en morceaux sur lesquels
la fonction f garde un signe constant et on applique les concepts précédents en ajoutant les
intégrales de chaque morceaux.
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TSI1 I PRIMITIVES ET INTÉGRALES SUR UN SEGMENT

Exemple (I.2.2)

0 1 2 3 4 5−1
0

1

2

3

4

−1

D1

D2

D3

Exprimer l’intégrale
∫ 5

0
f(x)dx à l’aide de l’aire

géométrique des domaines D1, D2 et D3 :

S3

I.3 Lien entre primitives et intégrales
Exemple (I.3.1)

Sur un bateau on est capable, grâce à un loch, de mesurer la vitesse instantanée. On se demande s’il
est possible, à partir de relevés (disons toutes les 2 secondes) des vitesses instantanées de retrouver la
distance parcourue. . .
Prenons un exemple :

2 4 6 8 10

secondes
1

2

3

4
(m/s)

0

temps (s) vitesse(m/s) dist. totale
0 2
2 3
4 3,5
6 3,75
8 3,25
10 3

Vitesse du bateau en fonction du temps

Quelle est la distance parcourue après 10 secondes ?

S4

Remarques –

1. La distance est finalement l’aire sous la courbe vitesse...

2. Rappel : en physique vous avez vu que la fonction vitesse était la dérivée de la fonction distance.

3. Conclusion : qualitativement, « l’intégrale c’est le contraire de la dérivation ! »

Olivier BRÉBANT
Lycée Artaud – 2025/2026

p5/16



I PRIMITIVES ET INTÉGRALES SUR UN SEGMENT TSI1

Propriété I.3.2 (Intérgrale et primitive)

Soit I un intervalle de R, f une fonction continue sur I, (a, b) ∈ I2 et F une primitive de f .
Alors on a : ∫ b

a
f(x) dx = [F (x)]ba = F (b) − F (a)

Exemple (I.3.3)

L’expression de la fonction de l’exemple I.2.2 est : f(x) = 3
16x3 − 7

8x2 + 2.
Calculer l’aire géométrique du domaine coloré.

S5

Pour nous aider dans les divers calculs, on pourra se servir des propriétés immédiates suivantes :

Propriété I.3.4 (immédiates)

• On a :
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx

• Chasles : pour tous réels c, d, e de [a ; b] on a :
∫ d

c
f(x)dx =

∫ e

c
f(x)dx +

∫ d

e
f(x)dx

• Linéarité 1 :
∫ b

a
(f + g)(x)dx =

∫ b

a
f(x)dx +

∫ b

a
g(x)dx

• Linéarité 2 : Pour tout réel λ,
∫ b

a
(λf)(x)dx = λ

∫ b

a
f(x)dx

♪ Définition I.3.5 (valeur moyenne)

La valeur moyenne d’une fonction f sur un intervalle [a ; b] est le nombre réel µ défini par

µ = 1
b − a

∫ b

a
f(x)dx

Interpréter graphiquement le résultat précédent :
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TSI1 II ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES À COEFFICIENTS CONSTANTS

S6

II Équations différentielles linéaires à coefficients constants

On reprend ici rapidement ce que l’on a déjà vu sur les deux TD « Équations différentielles pour la
physique/chime, ordre 1 et 2 ». On pourra s’y référer pour revoir notamment les démonstrations.

Dans ce chapitre, ce qui sera nouveau, c’est que l’on va envisager des seconds membres un peu plus
généraux que ceux que l’on a déjà vus.

On appelle équation différentielle une équation dont l’inconnue est une fonction (et pas un nombre)
et qui met en relation la fonction et ses dérivées. Cette équation impose implicitement que la fonction
solution soit « suffisamment » dérivable.
L’ordre de l’équation différentielle correspond à l’ordre de dérivation le plus grand qui apparaît dans
l’équation.
Résoudre une équation différentielle c’est déterminer toutes les fonctions qui satisfont la relation avec
l’intervalle sur lequel cette relation est satisfaite.

Exemple (II.0.1)

Montrer que la fonction f définie sur R par f(x) = x +
√

1 + x2 est solution sur R de l’équation
différentielle d’ordre 2 :

(1 + x2)y′′ + xy′ − y = 0

S7

II.1 Équations différentielles linéaires à coefficients constants d’ordre 1
Dans ce paragraphe on s’occupera plus précisément des équations différentielles de la forme :

(E) y′(t) + a × y(t) = b(t)
constante

où y est une fonction (que l’on cherche) de la variable t, b est une fonction définie sur un intervalle I, à
valeurs dans R ou C et a est un nombre réel/complexe fixé (indépendants de la variable t).

On parlera d’équation homogène associée à (E) (ou par abus de langage de l’équation sans second
membre. . . ) l’équation :

(E0) y′ + ay = 0

Olivier BRÉBANT
Lycée Artaud – 2025/2026
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II ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES À COEFFICIENTS CONSTANTS TSI1

Remarques – On a omis la variable t, mais c’est juste une commodité usuelle.

p8/16 Olivier BRÉBANT
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TSI1 II ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES À COEFFICIENTS CONSTANTS

© Théorème II.1.1 (solutions de l’équation homogène)

Les solutions de l’équation homogène

(E0) : y′ + ay = 0

sont les fonctions de la forme :
yh(t) = λe−at

où λ est un nombre fixé.

Preuve
Voir le TD d’introduction aux équation différentielles d’ordre 1 pour la physique chimie. □

Remarques – Plus généralement on pourrait s’intéresser à une équation où le a serait une fonction qui
dépend de t également. Donner les solutions de l’équation : y′(t) + a(t)y(t) = 0 puis résoudre y′ + ty = 0

(On pourra ne chercher que des solutions qui ne s’annulent pas et utiliser la forme y′

y
)

S8

© Théorème II.1.2 (solutions générales)

Si yp est une solution déjà connue de l’équation

(E) : y′(t) + ay(t) = b(t)

(on parle de solution particulière) alors l’ensemble des solutions de cette équation est formé par les
fonctions de la forme y = yp + yh (avec yh, une solution de l’équation homogène associée à (E)).

C’est à dire que l’ensemble des solutions de l’équation (E) est composé des fonctions y définies
par :

∀t ∈ R, y(t) = yp(t) + λe−at

Preuve

S9

□

Remarques – Ainsi, pour trouver l’ensemble des solutions de (E) il est nécessaire d’en trouver une solution
particulière puis d’ajouter l’ensemble des solutions de l’équation homogène. Une telle solution particulière
peut-être :

• soit évidente (une fonction constante par exemple)

Olivier BRÉBANT
Lycée Artaud – 2025/2026
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II ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES À COEFFICIENTS CONSTANTS TSI1

• soit trouvée par indication de l’énoncé

• soit utiliser des solutions connues par le biais des propriétés suivantes

Propriété II.1.3 (second membre de la forme b(t) = eαt)

L’équation :
(E) : y′ + ay = eαt

admet une solution particulière de la forme :

yp(t) = Ceαt si α ̸= −a et yp(t) = Cteαt sinon

avec C constante.

Remarques – Plus généralement, si P est un polynôme de degré n, alors l’équation (E) : y′ +ay = P (t)eαt

admet une solution particulière de la forme yp(t) = Q(t)eαt avec deg(Q) = deg(P ) si α ̸= −a et deg(Q) =
deg(P ) + 1 sinon.

Exemple (II.1.4)

Résoudre sur R :

(E1) : y′ + 2y = (t2 + 1)e−t et (E2) : y′ + 2y = (t2 − 1)e−2t

Pour (E1) :

S10

Pour (E2) :

S11
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TSI1 II ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES À COEFFICIENTS CONSTANTS

Propriété II.1.5 (second membre de la forme b(t) = A cos(Ωt) ou b(t) = A sin(Ωt))

• Pour chercher une solution particulière d’une équation de la forme :

y′ + ay = A cos(ωt)

on peut :

– soit considérer la partie réelle d’une solution particulière de

y′ + ay = Aeiωt

et utiliser la propriété précédente.
– soit chercher directement une solution sous la forme yp(t) = B0 cos(ωt) + B1 sin(ωt).

• Même principe avec sin et la partie imaginaire.

Exemple (II.1.6)

Résoudre y′ + y = cos t en utilisant les complexes

S12

Résoudre y′ + y = cos t en utilisant la méthode directe

S13

Propriété II.1.7 (principe de superposition)

Considérons les deux équations :

(E1) : y′(t) + ay(t) = b1(t) et (E2) : y′(t) + ay(t) = b2(t)

Si f1 et f2 sont solutions respectivement de (E1) et (E2), alors pour tous réels λ et µ la fonction
f = λf1 + µf2 est solution de l’équation (E) : y′(t) + ay(t) = λb1(t) + µb2(t).

Olivier BRÉBANT
Lycée Artaud – 2025/2026
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II ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES À COEFFICIENTS CONSTANTS TSI1

Exemple (II.1.8)

Résoudre l’équation y′ − y = x + e−x

S14

© Théorème II.1.9 (Problème de Cauchy)

Si on fixe des conditions initiales, alors il y a existence et unicité de la solution. Plus précisément : Si
t0 et y0 sont fixés, alors il existe une et une seule solution au système :{

y′ + ay = b(t)
y(t0) = y0

On nomme ce système « problème de Cauchy »

Exemple (II.1.10)

Déterminer la solution f de (E) : 2y′ = 4y − 7 qui vérifie f(0) = 1

S15

II.2 Équations différentielles linéaires à coefficients constants d’ordre 2
Ce paragraphe est une copie du précédent avec quelques éléments nouveaux !
On s’occupera ici des équations différentielles de la forme :

(E) y′′(t) + ay′(t) + by(t) = c(t)

où y est une fonction (que l’on cherche) de la variable t, c est une fonction définie sur un intervalle I, à
valeurs dans R ou C et a et b sont deux nombres réels/complexes fixés (indépendants de la variable t).
On parlera d’équation homogène associée à (E) (ou par abus de langage de l’équation sans second mem-
bre. . . ) l’équation :

(E0) y′′ + ay′ + by = 0

p12/16 Olivier BRÉBANT
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Remarques –

• On a omis la variable t, mais c’est juste une commodité usuelle.

• Si on cherche des solutions de l’équation homogène sous la forme y(t) = ert, alors y′(t) = rert et
y′′(t) = r2ert, et l’équation (E) devient équivalente à (Ec) : r2 +ar + b = 0 que l’on appellera équation
caractéristique de (E0).

© Théorème II.2.1 (solutions de l’équation homogène)

On associe à l’équation homogène
(E0) : y′′ + ay′ + by = 0

son équation caractéristique :
(Ec) : r2 + ar + b = 0

En notant ∆ son discriminant, on distingue alors trois cas :

• Si ∆ ̸= 0, l’équation caractéristique (Ec) admet deux racines (réelles ou complexes) distinctes r1
et r2. Les solutions de (E0) sont les fonctions de la forme :

yh(t) = λer1t + µer2t avec λ et µ des nombres fixés

• Si ∆ = 0, l’équation caractéristique (Ec) possède une racine double r0. Les solutions de (E0)
sont les fonctions de la forme :

yh(t) = (λ + µt)er0t avec λ et µ des nombres fixés.

• Si ∆ < 0 et que les coefficients a et b sont réels on préfère obtenir des solutions réelles. On note
r1 = α + iβ et r2 = α − iβ les deux racines complexes conjuguées de (Ec). Les solutions de (E0)
sont alors les fonctions :

yh(t) = eαt(λ cos(βt) + µ sin(βt)) avec λ et µ des nombres fixés.

Preuve
Voir le TD d’introduction aux équations différentielles d’ordre 2 pour la physique/chimie. □

Exemple (II.2.2)

Cherchons les solutions réelles de : y′′ − y′ − 2y = 0

S16

Cherchons les solutions réelles de : y′′ + 2y′ + 2y = 0

S17
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Cherchons les solutions réelles de : y′′ + ω2y = 0

S18

© Théorème II.2.3 (solutions générales)

Si yp est une solution déjà connue de l’équation

(E) : y′′(t) + ay′(t) + by(t) = c(t)

(on parle de solution particulière) alors l’ensemble des solutions de cette équation est formé par les
fonctions de la forme

y = yp + yh

où yh est une solution (quelconque) de l’équation homogène associée à (E).

Preuve
Voir aussi le TD d’introduction aux équations différentielles d’ordre 2 pour la physique/chimie. □

Remarques – Ainsi, pour trouver l’ensemble des solutions de (E) il est nécessaire d’en trouver une solution
particulière puis d’ajouter l’ensemble des solutions de l’équation homogène. Voyons deux cas particuliers
au programme.

Méthode –

1. Pour une équation de la forme y′′ + ay′ + by = Aeλt, on cherche une solution particulière sous la
forme :

• yp(t) = Beλt si λ n’est pas racine de l’équation caractéristique.
• yp(t) = Bteλt si λ est racine simple de l’équation caractéristique.
• yp(t) = Bt2eλt si λ est racine double de l’équation caractéristique.

2. Pour une équation de la forme y′′ + ay′ + by = A cos(ωt) ou y′′ + ay′ + by = A sin(ωt), on cherche une
solution particulière sous la forme :

• yp(t) = B cos(ωt) + C sin(ωt) si iω n’est pas racine de l’équation caractéristique,
• yp(t) = t

(
B cos(ωt) + C sin(ωt)

)
si iω est racine de l’équation caractéristique.

p14/16 Olivier BRÉBANT
Lycée Artaud – 2025/2026



TSI1 II ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES À COEFFICIENTS CONSTANTS

Exemple (II.2.4)

Résoudre y′′ + y′ − 6y = 6e−t

S19

Exemple (II.2.5)

Résoudre y′′ + y = 2 sin t

S20

Propriété II.2.6 (principe de superposition)

Considérons les deux équations :

(E1) : y′′(t) + ay′(t) + by(t) = c1(t) et (E2) : y′′(t) + ay′(t) + by(t) = c2(t)

Si f1 et f2 sont solutions respectivement de (E1) et (E2), alors pour tous réels λ et µ la fonction
f = λf1 + µf2 est solution de l’équation (E) : y′′(t) + ay′(t) + by(t) = λc1(t) + µc2(t).

© Théorème II.2.7 (Problème de Cauchy)

Si on fixe des conditions initiales, alors il y a existence et unicité de la solution. Plus précisément :
Si t0, y0 et y′

0 sont fixés, alors il existe une et une seule solution au système :
y′′ + ay′ + by = c(t)
y(t0) = y0

y′(t0) = y′
0

On nomme ce système « problème de Cauchy »

Olivier BRÉBANT
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Exemple (II.2.8)

Déterminer la solution f de (E) : y′′ − 5y′ + 6y = 4x qui vérifie f(0) = 2 et f ′(0) = 1.

S21
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