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Equations différentielles

Le but de ce chapitre est de résoudre des équations différentielles d’ordre 1 et 2 a coefficients constants.
Sauf mention explicite du contraire, les fonctions utilisées seront définies sur un intervalle de R.
On va commencer dans la premiere section a donner quelques rappels sur les notions d’intégrales et de

primitives et s’entralner a calculer des primitives avant de s’attaquer a des équations différentielles plus
completes.
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I PRIMITIVES ET INTEGRALES SUR UN SEGMENT TSI

| Primitives et intégrales sur un segment

1.1 Primitives

f‘(& Définition L.1.1 (Primitive)]

Soit I un intervalle de R, et f : I — R une fonction. On dit que F' est une primitive de f sur [ si F
est dérivable et si F/ = f.

Exemple (I.1.2)

1

x? _ 1
T

Donner des primitives des fonctions f(z) = % et g(x)
valables :

Gy

en précisant sur quels intervalles elles sont

REMARQUES —
e On notera / f(z)dz une primitive quelconque de f.

e Il n’y a jamais unicité d’une primitive car si F' est une primitive de f alors quel que soit c € R, F + ¢
est aussi une primitive de f. Mais on retiendra la propriété suivante :

ProprEid I.1.3J

Soit I un intervalle de R, et f une fonction définie sur I. Si F' est une primitive de f sur [ alors les
primitives de f sont les fonctions F' + A, avec A € R.

Cela signifie que sous réserve d’existence, il y a unicité des primitives & une constante additive pres.

"(Propriété I.1.4 (Linéarité)}

Soit I un intervalle de R, et f et g deux fonctions définies sur I.

e Si F est une primitive de f et G une primitive de g, alors F' + G est une primitive de f + g.

e Si F est une primitive de f et A € R, alors AF' est une primitive de Af.

REMARQUES

o Attention, contrairement & la dérivation, il n’y a pas de formule directe permettant de primitiver un
produit, un quotient ou une composée (ne pas essayer d’inventer une régle, elle sera probablement
fausse !). Toutefois on verra plus tard la notion d’intégration par partie qui s’en approche.

o Cela explique que le calcul de primitives soit plus difficile que le calcul de dérivées (un peu comme
factoriser est plus difficile que développer).
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I PRIMITIVES ET INTEGRALES SUR UN SEGMENT

e La recherche de primitive est tellement délicate, que parfois elle peut ne pas aboutir. Pour étre un
peu plus précis, il existe des fonctions s’exprimant a l’aide de fonctions usuelles, dont les primitives
(qui pourtant existent) ne peuvent pas s’écrire explicitement a ’aide de fonctions usuelles (c’est le cas

2

par exemple de la fonction classique z — e~*").

e Pour espérer pouvoir calculer des primitives il est impératif de connaitre les primitives des fonctions
usuelles (ou & minima savoir lire parfaitement le tableau des dérivées usuelles a l'envers. .. ). Ensuite
on essaye de s’y ramener par quelques transformations algébriques.

Exemple (I.1.5)

52

L’intervalle I = f(z) = | Primitives F(z) =
R k kx +C
R x %zQ +C
R ax +b 2a0? +bx+ C
1
R "(n>0)| ——a"l4C
n+1
10, +00[ ou ] 0f ! : +C
oo[ ou |—o0 — ——
Y Y m2 €T
1 1 1
1
10, +00[ ou |—o00,0] = In|z|+C
x
1
0 — 2 C
0, +o0] NG VI +
R e’ e* +C
R sin —cosz +C
R cosx sinz 4+ C
1
R — arctanx + C
1422

4
Déterminer les primitives des fonctions f(x) = 2* — —, g(x) = 4 cos(x) + 3sin(2z), et h(z) = > 1.
x
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I PRIMITIVES ET INTEGRALES SUR UN SEGMENT

TSIt

En pratique on essayera de repérer les fonctions de la forme :

Condition sur « flz) = Primitives F(x) =
w'u™ (n € N) n%_lu”“ +C
o/ 1
Pour tout z € I,u(z) # 0 — —-—+C
U U
Pour tout z € T, u(x) # 0 “/(>2) L 1 ¢
our tout x u(x —(n > —_—
' u” n—1uyn-!
/
Pour tout x € I,u(z) # 0 Ll In|u|+C
u
/
Pour tout = € I, u(x) > 0 % 2y/u+C
u'e” e+ C
/
v arctanu + C
1+ u?

u' x (v owu)

vou-+C

1.2 Approche géométrique de la notion d’intégrale sur un segment

La définition rigoureuse d’intégrale d’une fonction sur un segment viendra au second semestre.

I'instant on se contente d’utiliser la notion intuitive d’aire.

"(a\ Définition 1.2.1 (intuitive))

Pour

o Si f est une fonction continue et positive définie sur un intervalle [a ; b] alors intuitivement
I'intégrale de f sur [a;b] est l'aire du domaine 2 délimité par la courbe de f, I’axe horizontal et

les deux droites verticales d’équations x = a et £ = b. On la note :

intégrales de chaque morceaux.

/ab f(z)dz

b
o Si f est une fonction continue et négative sur [a ; b] alors : / f(z)dx = —aire(2)
a

e Si f est continue et de signe quelconque, alors on découpe l'intervalle en morceaux sur lesquels
la fonction f garde un signe constant et on applique les concepts précédents en ajoutant les
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TSI I PRIMITIVES ET INTEGRALES SUR UN SEGMENT

Exemple (1.2.2)

5
Exprimer 'intégrale / f(z)dz a laide de l'aire

4 géométrique des domaines %1, % et I :

. 59

1.3 Lien entre primitives et intégrales

Exemple (I1.3.1)

Sur un bateau on est capable, grace a un loch, de mesurer la vitesse instantanée. On se demande s’il
est possible, a partir de relevés (disons toutes les 2 secondes) des vitesses instantanées de retrouver la
distance parcourue. . .
Prenons un exemple :

(m/s)

°
d ° temps (s) | vitesse(m/s) | dist. totale

3 ® ® 0 5

2 2 3
4 3,9
1 secondes 6 3,75
. ! + - ! - 8 3,25

0 ‘ 2 4 6 8 10 10 3

Vitesse du bateau en fonction du temps

Quelle est la distance parcourue apres 10 secondes ?

REMARQUES —
1. La distance est finalement 1’aire sous la courbe vitesse...
2. Rappel : en physique vous avez vu que la fonction vitesse était la dérivée de la fonction distance.

3. Conclusion : qualitativement, « 'intégrale c’est le contraire de la dérivation ! »
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I PRIMITIVES ET INTEGRALES SUR UN SEGMENT TSI

'-(Propriété I.3.2 (Intérgrale et primitive))

Soit I un intervalle de R, f une fonction continue sur I, (a,b) € I? et I une primitive de f.
Alors on a :

b
/a f@)de = [F@))’, = F(b) - F(a)

Exemple (1.3.3)

3 7
L’expression de la fonction de ’exemple 1.2.2 est : f(x) = Eﬁ - éxQ + 2.

Calculer l'aire géométrique du domaine coloré.

Gs)

Pour nous aider dans les divers calculs, on pourra se servir des propriétés immédiates suivantes :

'-(Propriété 1.3.4 (immédiates))

Ona: /abf(:c)da: = —/baf(:c)d:c

d e d
Chasles : pour tous réels ¢,d, e de [a;b] on a : / f(z)dx = / f(z)dx +/ f(z)dz
C C e

Linéarité 1 : /ab(f +g)(z)dx = /ab f(x)dz + /abg(a?)dzv

b b
Linéarité 2 : Pour tout réel A, / (A f)(x)dx = )\/ f(z)dx

"(J\ Définition 1.3.5 (valeur moyenne)]

La valeur moyenne d’une fonction f sur un intervalle [a ; b] est le nombre réel p défini par

b
bia /a f(x)dz

lLL:

Interpréter graphiquement le résultat précédent :
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TSI II EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS CONSTANTS

Il Equations différentielles linéaires a coefficients constants

On reprend ici rapidement ce que on a déa vu sur les deux TD « Equations différentielles pour la
physique/chime, ordre 1 et 2 ». On pourra s’y référer pour revoir notamment les démonstrations.

Dans ce chapitre, ce qui sera nouveau, c’est que 'on va envisager des seconds membres un peu plus
généraux que ceux que ’on a déja vus.

On appelle équation différentielle une équation dont I'inconnue est une fonction (et pas un nombre)
et qui met en relation la fonction et ses dérivées. Cette équation impose implicitement que la fonction
solution soit « suffisamment » dérivable.

L’ordre de I’équation différentielle correspond a l'ordre de dérivation le plus grand qui apparait dans
I’équation.

Résoudre une équation différentielle c’est déterminer toutes les fonctions qui satisfont la relation avec
I'intervalle sur lequel cette relation est satisfaite.

Exemple (I1.0.1)

Montrer que la fonction f définie sur R par f(z) = = + V1 + 22 est solution sur R de I’équation
différentielle d’ordre 2 :

67

(1 +:E2)y” +ay —y=0

1.1 Equations différentielles linéaires a coefficients constants d’ordre 1
Dans ce paragraphe on s’occupera plus précisément des équations différentielles de la forme :

constante

(B) ¢ () +axyt)=>b)

ot y est une fonction (que l'on cherche) de la variable ¢, b est une fonction définie sur un intervalle I, a
valeurs dans R ou C et a est un nombre réel/complexe fixé (indépendants de la variable t).

On parlera d’équation homogeéne associée a (E) (ou par abus de langage de 1’équation sans second
membre. .. ) 'équation :
(Eo)  y' +ay=0
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II EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS CONSTANTS TSI

REMARQUES — On a omis la variable ¢, mais c’est juste une commodité usuelle.
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TSI II EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS CONSTANTS

"(@ Théoréme II.1.1 (solutions de I’équation homogéne)}

Les solutions de ’équation homogene

(Eo): y' +ay=0
sont les fonctions de la forme :

yn(t) = de™*

ou A est un nombre fixé.

Preuve

l Voir le TD d’introduction aux équation différentielles d’ordre 1 pour la physique chimie. O

REMARQUES — Plus généralement on pourrait s’intéresser a une équation ou le a serait une fonction qui
dépend de ¢ également. Donner les solutions de I’équation : y/(t) + a(t)y(t) = 0 puis résoudre y' + ty = 0
/

(On pourra ne chercher que des solutions qui ne s’annulent pas et utiliser la forme y—)

"(@ Théoréme I1.1.2 (solutions générales)]

Si gy, est une solution déja connue de I’équation

(E) : y/(t) + ay(t) = b(t)
(on parle de solution particuliére) alors 'ensemble des solutions de cette équation est formé par les
fonctions de la forme y = y, + yp (avec yp, une solution de I’équation homogene associée a (E)).

C’est a dire que l'ensemble des solutions de I'équation (E) est composé des fonctions y définies
par :

Vt € R, y(t) = yp(t) + Ae™

Preuve

O

REMARQUES — Ainsi, pour trouver ’ensemble des solutions de (FE) il est nécessaire d’en trouver une solution

particuliére puis d’ajouter ’ensemble des solutions de I’équation homogene. Une telle solution particuliere
peut-étre :

o soit évidente (une fonction constante par exemple)

Olivier BREBANT
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II EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS CONSTANTS TSI

e soit trouvée par indication de I’énoncé

e soit utiliser des solutions connues par le biais des propriétés suivantes

'—(Propriété I1.1.3 (second membre de la forme b(t) = eat))

L’équation :
(B): of +ay =

admet une solution particuliere de la forme :

yp(t) = Ce™ si a # —a | et |y,(t) = Cte™ sinon

avec C constante.

REMARQUES — Plus généralement, si P est un polynéme de degré n, alors 'équation (E) : 3/ +ay = P(t)e™
admet une solution particuliere de la forme y,(t) = Q(t)e* avec deg(Q) = deg(P) si a # —a et deg(Q) =
deg(P) + 1 sinon.

Exemple (I1.1.4)

Résoudre sur R :
(By):y +2y=(t*+1e et (FEy):y +2y=(t>—1)e %

Pour (E7) :

Pour (E7) :
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TSI II EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS CONSTANTS

"(Propriété I1.1.5 (second membre de la forme b(t) = Acos(Qt) ou b(t) = Asin(Qt)))—

e Pour chercher une solution particuliere d’une équation de la forme :
Y + ay = Acos(wt)
on peut :
— soit considérer la partie réelle d’une solution particuliere de
Y + ay = Ae™"

et utiliser la propriété précédente.

— soit chercher directement une solution sous la forme y,(t) = By cos(wt) + B sin(wt).

o« Méme principe avec sin et la partie imaginaire.

Exemple (I1.1.6)

Résoudre ' + y = cost en utilisant les complexes

&)

Résoudre y' + y = cost en utilisant la méthode directe

©

'—(Propriété I1.1.7 (principe de superposition))

Considérons les deux équations :

(B1) 1 ¢/ (t) +ay(t) =bi(t) et (Ba):y'(t) +ay(t) = ba(t)

Si f1 et fo sont solutions respectivement de (Ep) et (E2), alors pour tous réels A et u la fonction
f = MAf1+ pfa est solution de I'équation (E) : y'(t) + ay(t) = Aby(t) + uba(t).
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II EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS CONSTANTS TSI

Exemple (II.1.8)

Résoudre 'équation y/ —y =z +e™*

"(@ Théoréme I1.1.9 (Probléme de Cauchy)]

Si on fixe des conditions initiales, alors il y a existence et unicité de la solution. Plus précisément : Si
to et yo sont fixés, alors il existe une et une seule solution au systéme :

{y’ +ay = b(t)
y(to) = vo

On nomme ce systeme « probleme de Cauchy »

Exemple (I1.1.10)
Déterminer la solution f de (E) : 2y’ = 4y — 7 qui vérifie f(0) =1

©

1.2 Equations différentielles linéaires a coefficients constants d’ordre 2

Ce paragraphe est une copie du précédent avec quelques éléments nouveaux !
On s’occupera ici des équations différentielles de la forme :

(B)  y"(t) +ay'(t) + by(t) = c(t)
ot y est une fonction (que l'on cherche) de la variable ¢, ¢ est une fonction définie sur un intervalle I, a
valeurs dans R ou C et a et b sont deux nombres réels/complexes fixés (indépendants de la variable t).

On parlera d’équation homogeéne associée & (E) (ou par abus de langage de 1’équation sans second mem-

bre...) Péquation :
(Eo) ' +ay' +by=0
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TSI II EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS CONSTANTS

REMARQUES —
e On a omis la variable ¢, mais c’est juste une commodité usuelle.

e Si on cherche des solutions de I’équation homogene sous la forme y(t) = €™, alors y/(t) = re™ et
y"(t) = r2e™, et 'équation (E) devient équivalente & (E.) : 724+ ar +b = 0 que I'on appellera équation
caractéristique de (Eyp).

"(@ Théoréme I1.2.1 (solutions de I’équation homogéne))

On associe a I’équation homogene
(Eo): y"+ay +by=0

son équation caractéristique :
(Ec): ”+ar+b=0

En notant A son discriminant, on distingue alors trois cas :

o Si A # 0, équation caractéristique (E.) admet deux racines (réelles ou complexes) distinctes r;
et r9. Les solutions de (Ep) sont les fonctions de la forme :

yn(t) = Ae™t + pe™'| avec A et p des nombres fixés

e Si A = 0, I"équation caractéristique (E.) posseéde une racine double ry. Les solutions de (Ej)
sont les fonctions de la forme :

yn(t) = (A + ut)e™" | avec A et u des nombres fixés.

e Si A <0 et que les coefficients a et b sont réels on préfere obtenir des solutions réelles. On note
r1 = a+if et ro = a —if les deux racines complexes conjuguées de (E;). Les solutions de (Ep)
sont alors les fonctions :

yn(t) = e (X cos(Bt) + usin(Bt)) | avec A et u des nombres fixés.

Preuve
l Voir le TD d’introduction aux équations différentielles d’ordre 2 pour la physique/chimie. O

Exemple (I1.2.2)

Cherchons les solutions réelles de : ¢y’ — 3y’ — 2y =0

Cherchons les solutions réelles de : y” + 2y’ + 2y = 0

@
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II EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS CONSTANTS TSI

Cherchons les solutions réelles de : y” + w?y =0

"(@ Théoréme I1.2.3 (solutions générales)]

Si y, est une solution déja connue de I'équation

(E) + " (t) + ay/ (t) + by(t) = ()

(on parle de solution particuliére) alors I'ensemble des solutions de cette équation est formé par les
fonctions de la forme

Y=Y+ Yn

ou yy, est une solution (quelconque) de ’équation homogene associée a (E).

Preuve
Voir aussi le TD d’introduction aux équations différentielles d’ordre 2 pour la physique/chimie. O

REMARQUES — Ainsi, pour trouver I’ensemble des solutions de (F) il est nécessaire d’en trouver une solution
particuliére puis d’ajouter I’ensemble des solutions de 1’équation homogene. Voyons deux cas particuliers
au programme.

METHODE

1. Pour une équation de la forme y” + ay’ + by = AeM, on cherche une solution particuliere sous la
forme :
o Yp(t) = BeM si A nest pas racine de ’équation caractéristique.
o Yp(t) = BteM si X est racine simple de I’équation caractéristique.
o yp(t) = Bt?e* si ) est racine double de 1'équation caractéristique.
2. Pour une équation de la forme y” 4+ ay’ + by = A cos(wt) ou " + ay’ + by = Asin(wt), on cherche une
solution particuliere sous la forme :
e yp(t) = Beos(wt) + Csin(wt) si iw n’est pas racine de I’équation caractéristique,

o yp(t) = t(B cos(wt) + C'sin(wt)) si iw est racine de 'équation caractéristique.

Olivier BREBANT
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Exemple (I1.2.4)

Résoudre y” + ¢/ — 6y = 6e~*

Exemple (I1.2.5)

Résoudre vy’ +y = 2sint

B
'—(Propriété I1.2.6 (principe de superposition) J

Considérons les deux équations :
(B1) : y"(t) + ay' () + by(t) = c1(t) et (B2) : y"(t) +ay'(t) + by(t) = ca(t)

Si fi et fa sont solutions respectivement de (Ep) et (Ez), alors pour tous réels A et p la fonction
f = Af1 + pf2 est solution de équation (E) : ¢ (t) + ay/(t) + by(t) = Aex () + pea(t).

"(@ Théoréme I1.2.7 (Probléme de Cauchy))

Si on fixe des conditions initiales, alors il y a existence et unicité de la solution. Plus précisément :
Si to, yo et y(, sont fixés, alors il existe une et une seule solution au systéme :

y' +ay' + by = c(t)

y(to) = vo

y'(to) = o

On nomme ce systeme « probléeme de Cauchy »
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Exemple (I1.2.8)
Déterminer la solution f de (E) : y"” — 5y’ + 6y = 4z qui vérifie f(0) =2 et f/(0) = 1.

&)
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