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Raisonnement par récurrence

Figure 1: Merveilleux nombres premiers (J.P. Delahaye)

« Si un nombre k tombe dans un trou et si, chaque fois que vous mettez un entier n ⩾ k dans le trou vous
êtes obligé de mettre aussi l’entier n + 1, alors, tous les entiers à partir de k seront dans le trou. »
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I Introduction et quelques rappels

I.1 Un mini rappel sur les suites
On aura en fin d’année un chapitre approfondi sur les suites, mais voici un petit rappel qui nous sera utile :

♪ Définition I.1.1

Une suite notée (un) est une liste de nombres réels indexée par les entiers naturels.
À chaque entier n on associe (un et un seul) nombre réel un qui est appelé le nieme terme de la suite.

Une suite peut être définie de plusieurs façons :

• Avec une formule explicite : par exemple un = 2n + 3.
Pour chaque valeur de n on peut calculer directement la valeur de un, par exemple u5 = 2×5+3 = 13.

• Avec une définition par récurrence : on donne la valeur du premier terme u0 (ou parfois u1) et une
formule qui permet de calculer un terme à partir du précédent : par exemple u0 = 1 et un+1 = un +2.
Pour calculer le nieme terme, il faut donc calculer tous les termes précédents !

Pour voir si l’on a bien compris, on définit deux suites :

un = 3n − 1 et
{

vn+1 = 2vn + n − 1
v0 = 1

Q 1 Calculer les termes de u0 à u4, puis écrire une fonction python de signature u(n:int)->list qui
renvoie la liste des termes de u0 à un de la suite (un).

S1

Q 2 Calculer les termes de v0 à v4, puis écrire une fonction python de signature v(n:int)->list qui renvoie
la liste des termes de v0 à vn de la suite (vn).

S2

□ ✍ Exercice H.1
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I.2 Petit rappel de logique
Rappel du premier chapitre :

♪ Définition I.2.1 (proposition)

Une proposition (on dit aussi une assertion) est une énoncé (mathématique) qui peut prendre deux
valeurs : VRAI ou FAUX

Exemple – Voici des propositions :

• ABC est un triangle rectangle en A

• Pour tout n le terme un de la suite est négatif.

• ...

Remarques – Dans les cas où la proposition dépend d’un paramètre (comme dans le 2e cas), pour qu’elle
soit VRAIE, il faut qu’elle le soit pour toutes les valeurs du paramètre.

Attention ! –

• Pour démontrer qu’une proposition est vraie, donner un ou des exemples ne suffit pas. Il faut
exhiber un raisonnement général utilisant des propositions déjà démontrées. . .
(Voir exemple I.2.3 ci-dessous)

• En revanche, un contre-exemple suffit pour justifier qu’une proposition est fausse.
(Voir exemple I.2.2 ci-dessous)

Exemple (I.2.2)

À propos de la conjecture de Fermat

Parmi les résultats énoncés par Pierre de Fermat (XVIIe siècle), il y a une conjecture qui disait :

« quel que soit l’entier naturel n, le nombre Fn = 2(2n) + 1 est un nombre premier. »

Q 1 Tester cette conjecture pour n = 0, n = 1, n = 2.

Q 2 Écrire une fonction python nommée fermat(n:int)->int qui reçoit un entier naturel n et qui
renvoie le nombre 0 si le nombre Fn = 2(2n) + 1 est premier et qui renvoie un diviseur de Fn

sinon.
Tester alors cette conjecture de Fermat pour n = 3, n = 4 et n = 5.

Q 3 Conclure.

Pour information le mathématicien génial Leohnard Euler (XVIIIe siècle) avait trouvé le contre-
exemple (sans machine !) :

2(25) + 1 = 232 + 1 = 4 294 967 297 = 641 × 6 700 417

On a même vérifié que pour les valeurs de n comprises entre 5 et 30 elle ne marchait pas !
À l’heure actuelle on ne connait toujours pas de fonction efficace permettant de ne générer que des
nombres premiers. . .
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Exemple (I.2.3)

À propos de la conjecture de Syracuse... voir aussi cours d’info

On considère la suite (un) définie par ainsi :

« On part d’un entier u0. Si cet entier est pair on note u1 la moitié de u0 et s’il est impair on prend
pour u1 le triple de u0 auquel on ajoute 1. On recommence alors le procédé avec u1 pour trouver u2

et ainsi de suite. . . »

Q 1 Calculer les 10 premières valeurs de la suite (un) si l’on part de u0 = 1, de u0 = 5 et u0 = 13.
Que remarque-t-on ?

Q 2 La conjecture prédit que pour n’importe quelle valeur choisie pour u0, on finira toujours par
tomber à un moment donné sur le nombre 1.
Écrire une petite fonction en Python nommée duree(n:int)->int qui reçoit un entier n et qui
renvoie le nombre d’étapes nécessaires avant de tomber sur le nombre 1. Ce nombre d’étapes est
appelé la durée du vol.

Donner alors la durée de vol si le nombre de départ est u0 = 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q 3 Écrire un petit script python pour trouver un entier donnant une durée de vol supérieure à celle

obtenue avec u0 = 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q 4 Modifier votre script python afin qu’il affiche l’entier u0 ∈ J1, 1000K qui donne la durée de vol
maximale ainsi que cette durée ?

Q 5 On peut aussi par exemple s’intéresser à la hauteur du vol, c’est à dire la plus grande valeur
atteinte pendant le vol. . . Pour en savoir plus si vous êtes intéressés pas le sujet on peut consulter
la page du site de Gérard Villemin consacrée au sujet : conjecture de Syracuse

Pour information, cette conjecture a été testée numériquement avec succès pour des valeurs de u0
jusqu’à 1020 (!!) mais à l’heure actuelle on n’a toujours pas réussi à démontrer qu’elle était vraie pour
tous les entiers. On ne peut donc toujours pas affirmer que cette proposition est vraie.
Toutefois, depuis 2019, on a réussi à démontrer qu’elle était vraie pour presque tous les entiers. . .

Exemple (I.2.4)

Une petite curiosité !

Considérons pour tout entier n les nombres An = n17 + 9 et Bn = (n + 1)17 + 9. On a pu vérifier
que An et Bn sont des nombres premiers entre eux (c’est à dire sans diviseurs communs) pour tous
n ⩽ 8 × 1050, mais qu’après cela ne marche plus ! (Voir "merveilleux nombres premiers" de J.P
Delahaye, p191)
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II Le principe de récurrence
Pour démontrer une proposition qui dépend d’un paramètre n ∈ N le raisonnement par récurrence est un
bon outil...

Propriété II.0.1

Soit Pn une proposition dépendant d’un entier naturel n. Si on peut démontrer :

1. que P0 est vraie; (Initialisation)

2. que pour tout entier n ⩾ 0, on a l’implication :

« Si Pn vraie (Hypothèse de récurrence), alors Pn+1 vraie » (Hérédité)

Alors on peut conclure que :

3. la proposition Pn est vraie pour tout entier n ⩾ 0 (Conclusion).

Remarques – L’initialisation ne se fait pas toujours à 0, mais sur n’importe quel entier n0. La conclusion
est alors vraie à partir de n0.

Exemple – On considère la suite (un) définie par la relation :
{

u0 = 0
un+1 =

√
un + 5

.

Montrer avec un raisonnement par récurrence que ∀n ∈ N, 0 ⩽ un ⩽ 3.

S3

III Exercices

III.1 Récurrences avec des égalités
□ ✍ Exercice H.2 □ ✍ Exercice H.3 □ ✍ Exercice H.4 □ ✍ Exercice H.5 □ ✍ Exercice H.6

III.2 Récurrences avec inégalités
□ ✍ Exercice H.7 □ ✍ Exercice H.8 □ ✍ Exercice H.9 □ ✍ Exercice H.10

□ ✍ Exercice H.11 □ ✍ Exercice H.12 □ ✍ Exercice H.13 □ ✍ Exercice H.14
□ ✍ Exercice H.15

III.3 Récurrence avec divisibilité
□ ✍ Exercice H.16 □ ✍ Exercice H.17 □ ✍ Exercice H.18
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III.4 Récurrences avec des ". . . "
Remarques – Le vocabulaire rencontré dans cette section n’est pas à connaitre.

□ ✍ Exercice H.19 □ ✍ Exercice H.20 □ ✍ Exercice H.21 □ ✍ Exercice H.22
□ ✍ Exercice H.23

III.5 Avec récurrence forte
Propriété III.5.1

Soit Pn une proposition dépendant d’un entier naturel n. Si on peut démontrer :

1. que P0 est vraie; (Initialisation)

2. que pour tout entier n ⩾ 0, on a l’implication :

« Si (P0 et P1 et P2 et . . . et Pn) sont vraies (Hypothèse de récurrence forte), alors
Pn+1 vraie » (Hérédité)

Alors on peut conclure que :

3. la proposition Pn est vraie pour tout entier n ⩾ 0 (Conclusion).

Exemple – Montrer que tout entier n ⩾ 2 se décompose en produit de nombres premiers.

S4

□ ✍ Exercice H.24

Voir le TD : une pile de sucres infinie ?
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