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Raisonnement par récurrence

Figure 1: Merveilleux nombres premiers (J.P. Delahaye)

« Si un nombre k£ tombe dans un trou et si, chaque fois que vous mettez un entier n > k dans le trou vous
étes obligé de mettre aussi ’entier n + 1, alors, tous les entiers a partir de k seront dans le trou. »
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I INTRODUCTION ET QUELQUES RAPPELS TSI

| Introduction et quelques rappels

.1 Un mini rappel sur les suites

On aura en fin d’année un chapitre approfondi sur les suites, mais voici un petit rappel qui nous sera utile :

D e 1.1.1)

Une suite notée (u,) est une liste de nombres réels indexée par les entiers naturels.
A chaque entier n on associe (un et un seul) nombre réel u,, qui est appelé le n*“™¢ terme de la suite.

Une suite peut étre définie de plusieurs facons :

e Avec une formule explicite : par exemple u,, = 2n + 3.
Pour chaque valeur de n on peut calculer directement la valeur de u,,, par exemple us = 2x 543 = 13.

o Avec une définition par récurrence : on donne la valeur du premier terme ug (ou parfois u1) et une
formule qui permet de calculer un terme a partir du précédent : par exemple ug = 1 et up+1 = uy, + 2.
Pour calculer le n'¢™¢ terme, il faut donc calculer tous les termes précédents !

Pour voir si 'on a bien compris, on définit deux suites :

=2 -1
Up =3n —1 et Unt1 Un 1
U():l

Q1 Calculer les termes de ug & ug4, puis écrire une fonction python de signature u(n:int)->1list qui
renvoie la liste des termes de ug & uy, de la suite (uy,).

Gy

Q 2 Calculer les termes de vg a vy, puis écrire une fonction python de signature v(n:int)->1ist qui renvoie
la liste des termes de vg & vy, de la suite (vy,).

2

(D # Exercice H.l)
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1.2 Petit rappel de logique

Rappel du premier chapitre :

¢ Définition I1.2.1 (proposition))

Une proposition (on dit aussi une assertion) est une énoncé (mathématique) qui peut prendre deux

valeurs : VRAI ou FAUX

EXEMPLE — Voici des propositions :
e ABC est un triangle rectangle en A
e Pour tout n le terme u,, de la suite est négatif.

REMARQUES — Dans les cas ou la proposition dépend d’un parameétre (comme dans le 2e cas), pour qu’elle
soit VRAIE, il faut qu’elle le soit pour toutes les valeurs du parameétre.

ATTENTION ! —

e Pour démontrer qu’une proposition est vraie, donner un ou des exemples ne suffit pas. Il faut
exhiber un raisonnement général utilisant des propositions déja démontrées. ..
(Voir exemple 1.2.3 ci-dessous)

¢ En revanche, un contre-exemple suffit pour justifier qu'une proposition est fausse.
(Voir exemple 1.2.2 ci-dessous)

Exemple (I1.2.2)

A propos de la conjecture de Fermat

Parmi les résultats énoncés par Pierre de Fermat (XVIle siecle), il y a une conjecture qui disait :

« quel que soit Uentier naturel n, le nombre F, = 22") 41 est un nombre premier. »

Q1 Tester cette conjecture pour n =0, n =1, n = 2.

Q2 Ecrire une fonction python nommée fermat(n:int)->int qui recoit un entier naturel n et qui
renvoie le nombre 0 si le nombre F, = 2(2") 4+ 1 est premier et qui renvoie un diviseur de F),
sinon.

Tester alors cette conjecture de Fermat pour n =3, n =4 et n = 5.

Q 3 Conclure.

Pour information le mathématicien génial Leohnard Euler (XVIIle siecle) avait trouvé le contre-
exemple (sans machine !) :

2) 41 =232+ 1 = 4294967297 = 641 x 6700417

On a méme vérifié que pour les valeurs de n comprises entre 5 et 30 elle ne marchait pas !
A T’heure actuelle on ne connait toujours pas de fonction efficace permettant de ne générer que des
nombres premiers. . .
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On

Q1

Q2

Q3

Q4

Q5

que

Exemple (1.2.3)

A propos de la conjecture de Syracuse... voir aussi cours d’info

consideére la suite (u,) définie par ainsi :

« On part d’un entier ug. Si cet entier est pair on note uy la moitié de ug et s’il est impair on prend
pour uy le triple de ug auquel on ajoute 1. On recommence alors le procédé avec uy pour trouver us

et ainst de suite. .. »

Calculer les 10 premiéres valeurs de la suite (u,) si 'on part de ug = 1, de ug = 5 et ug = 13.
Que remarque-t-on ?

La conjecture prédit que pour n’importe quelle valeur choisie pour ug, on finira toujours par
tomber & un moment donné sur le nombre 1.

Ecrire une petite fonction en Python nommée ‘ duree(n:int)->int ‘ qui rec¢oit un entier n et qui
renvoie le nombre d’étapes nécessaires avant de tomber sur le nombre 1. Ce nombre d’étapes est
appelé la durée du vol.

Donner alors la durée de vol si le nombre de départ est ug =27. ... i

Ecrire un petit script python pour trouver un entier donnant une durée de vol supérieure a celle

ODEEIUE AVEC Ug = 27, oottt ittt e e e e e

Modifier votre script python afin qu’il affiche 'entier ug € [1,1000] qui donne la durée de vol
maximale ainsi que cette durée ?

On peut aussi par exemple s’intéresser a la hauteur du vol, c’est & dire la plus grande valeur
atteinte pendant le vol. .. Pour en savoir plus si vous étes intéressés pas le sujet on peut consulter
la page du site de Gérard Villemin consacrée au sujet : conjecture de Syracuse

Pour information, cette conjecture a été testée numériquement avec succes pour des valeurs de wug
jusqu’a 1020 (1) mais & I'heure actuelle on n’a toujours pas réussi & démontrer qu’elle était vraie pour
tous les entiers. On ne peut donc toujours pas affirmer que cette proposition est vraie.

Toutefois, depuis 2019, on a réussi a démontrer qu’elle était vraie pour presque tous les entiers. ..

Exemple (1.2.4)

Une petite curiosité !

Considérons pour tout entier n les nombres A, = n'” +9 et B, = (n+ 1)}7 + 9. On a pu vérifier
A, et B, sont des nombres premiers entre eux (c’est a dire sans diviseurs communs) pour tous

n < 8 x 10°°, mais qu’apres cela ne marche plus ! (Voir "merveilleur nombres premiers’ de J.P
Delahaye, p191)
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Il Le principe de récurrence

Pour démontrer une proposition qui dépend d’un parametre n € N le raisonnement par récurrence est un
bon outil...

'-(Propriété II.O.IJ

Soit &2, une proposition dépendant d’un entier naturel n. Si on peut démontrer :
1. que P est vraie; (Initialisation)

2. que pour tout entier n > 0, on a I'implication :
« Si &, vraie (Hypothése de récurrence), alors &, 1 vraie » (Hérédité)

Alors on peut conclure que :

3. la proposition £, est vraie pour tout entier n > 0 (Conclusion).

REMARQUES — L’initialisation ne se fait pas toujours a 0, mais sur n’importe quel entier ng. La conclusion
est alors vraie a partir de nyg.

ug =0
EXEMPLE — On consideére la suite (u,) définie par la relation : 0
Up+1 =/ Up + 5

Montrer avec un raisonnement par récurrence que Vn € N, 0 < u, < 3.

)

111 Exercices

I11.1 Récurrences avec des égalités

(D # Exercice H.2) (D # Exercice H.3) (D # Exercice H.4) (D # Exercice H.S) (D # Exercice H.6)

111.2 Récurrences avec inégalités

(I:I # Exercice H.7) ([] # Exercice H.S) (D # Exercice H.9) (D # Exercice H.10)
(D # Exercice H.11) (D # Exercice H.12) (D & Exercice H.13) (D # Exercice H.14)
(D # Exercice H.15)

111.3 Récurrence avec divisibilité

(D # Exercice H.16) (D # Exercice H.17) (I:I # Exercice H.18)
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111.4 Récurrences avec des "..."

REMARQUES — Le vocabulaire rencontré dans cette section n’est pas a connaitre.

(D # Exercice H.19) (D # Exercice H.20) (D # Exercice H.21) (D # Exercice H.22)
(D # Exercice H.23)

111.5 Avec récurrence forte
'-(Propriété III.5.1}

Soit &2, une proposition dépendant d’un entier naturel n. Si on peut démontrer :
1. que P est vraie; (Initialisation)

2. que pour tout entier n > 0, on a I'implication :

« Si (P et P1et Poet...et Py) sont vraies (Hypothese de récurrence forte), alors
Ppy1 vraie » (Hérédité)

Alors on peut conclure que :

3. la proposition &, est vraie pour tout entier n > 0 (Conclusion).

EXEMPLE — Montrer que tout entier n > 2 se décompose en produit de nombres premiers.

(D # Exercice H.24)

Voir le TD : une pile de sucres infinie ?
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