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Travail de Noël
Pas de gros travail pour ces vacances, car vous avez besoin de vous reposer. Mais cela ne veut pas dire qu’il faut

oublier les maths ! Voici donc un petit travail de Noël, à faire tranquillement pendant les vacances.

Exercice I (COMPLEXES)

Pour tout 𝑧 ∈ ℂ\{1} on pose 𝑓(𝑧) = 1 + 𝑧
1 − 𝑧 .

L’objectif est de montrer par trois méthodes différentes la propriété :

(𝑃) ∶ |𝑧| = 1 ⟹ 𝑓(𝑧) ∈ 𝑖ℝ

Les trois questions sont indépendantes.

Q 1 Méthode 1: en utilisant la forme algébrique (on pose 𝑧 = 𝑎 + 𝑖𝑏 avec (𝑎, 𝑏) ∈ ℝ2).

▶ Réponse :

𝑓(𝑧) = 1 + 𝑎 + 𝑖𝑏
1 − 𝑎 − 𝑖𝑏 = (1 + 𝑎 + 𝑖𝑏)(1 − 𝑎 + 𝑖𝑏)

(1 − 𝑎 − 𝑖𝑏)(1 − 𝑎 + 𝑖𝑏) =
1 − 𝑎2 − 𝑏2 + 𝑖2𝑏
(1 − 𝑎)2 + 𝑏2 + 1

or |𝑧| = 1 ⟺ 𝑎2 + 𝑏2 = 1, donc le numérateur devient 𝑖2𝑏 qui est imaginaire pur.

Q 2 Méthode 2: en utilisant les conjugués (et donc sans utiliser la forme algébrique).

▶ Réponse :

On calcule :

𝑓(𝑧) = (1 + 𝑧
1 − 𝑧) = 1 + 𝑧

1 − 𝑧

or |𝑧| = 1 ⟺ 𝑧 = 1
𝑧 , donc

𝑓(𝑧) =
1 + 1

z

1 − 1
z
=

z+1
z

z−1
z

= 𝑧 + 1
𝑧 − 1 = −(1 + 𝑧)

−(1 − 𝑧) = −1 + 𝑧
1 − 𝑧 = −𝑓(𝑧)

Ainsi 𝑓(𝑧) = −𝑓(𝑧), ce qui signifie que 𝑓(𝑧) est imaginaire pur.

Q 3 Méthode 3: en utilisant la forme exponentielle (on pose 𝑧 = eiθ et on utilise la technique de l’arc moitié pour
factoriser 1 + 𝑧 et 1 − 𝑧).

▶ Réponse :

On calcule :

𝑓(eiθ) = eiθ + 1
eiθ − 1

= eiθ/2(eiθ/2 + e−iθ/2)
eiθ/2(eiθ/2 − e−iθ/2)

= cos(𝜃/2)
𝑖 sin(𝜃/2)

qui est bien imaginaire pur.

Exercice II (SOMMES)

Pour tout entier naturel 𝑛 non nul, on définit : 𝐴n =
n
∑
k=1

√1+ 1
𝑘2

+ 1
(𝑘 + 1)2

Q 4 Soit 𝑘 un entier naturel. Développer l’expression (𝑘2 + 𝑘 + 1)2
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▶ Réponse :

On a :
(𝑘2 + 𝑘 + 1)2 = 𝑘4 + 2𝑘3 + 3𝑘2 + 2𝑘 + 1

Q 5 Prouver que pour tout entier naturel 𝑘 non nul : √1+ 1
𝑘2

+ 1
(𝑘 + 1)2

= 𝑘2 + 𝑘 + 1
𝑘(𝑘 + 1)

▶ Réponse :

On a :

√1+ 1
𝑘2

+ 1
(𝑘 + 1)2

= √𝑘2(𝑘 + 1)2 + (𝑘 + 1)2 + 𝑘2

𝑘2(𝑘 + 1)2
=

√𝑘4 + 2𝑘3 + 3𝑘2 + 2𝑘 + 1
𝑘(𝑘 + 1)

Or, d’après la question précédente, le numérateur est égal à 𝑘2 + 𝑘 + 1, donc le résultat.

Q 6 Déterminer un couple de réels (𝑎, 𝑏) tel que, pour tout 𝑘 ∈ ℕ∗ : 𝑘2 + 𝑘 + 1
𝑘(𝑘 + 1) = 1 + 𝑎

𝑘 + 𝑏
𝑘 + 1

▶ Réponse :

On cherche 𝑎 et 𝑏 tels que :

𝑘2 + 𝑘 + 1
𝑘(𝑘 + 1) = 1 + 𝑎

𝑘 + 𝑏
𝑘 + 1 = 𝑘(𝑘 + 1) + 𝑎(𝑘 + 1) + 𝑏𝑘

𝑘(𝑘 + 1) = 𝑘2 + (1 + 𝑎 + 𝑏)𝑘 + 𝑎
𝑘(𝑘 + 1)

En identifiant les numérateurs, on obtient le système :

{ 1 + 𝑎 + 𝑏 = 1
𝑎 = 1

dont la solution est 𝑎 = 1 et 𝑏 = −1.

Q 7 Calculer la somme : 𝑆n =
n
∑
k=1

(1𝑘 − 1
𝑘 + 1)

▶ Réponse :

On a :
𝑆n =

n
∑
k=1

(1𝑘 − 1
𝑘 + 1) = (1 − 1

2) + (12 − 1
3) + (13 − 1

4) + ⋯ + ( 1
𝑛 − 1

𝑛 + 1)

Tous les termes s’annulent par télescopage, sauf le premier et le dernier, donc :

𝑆n = 1 − 1
𝑛 + 1 = 𝑛

𝑛 + 1

Q 8 En déduire l’expression de 𝐴n en fonction de 𝑛.

▶ Réponse :

On a :

𝐴n =
n
∑
k=1

√1+ 1
𝑘2

+ 1
(𝑘 + 1)2

=
n
∑
k=1

(1 + 1
𝑘 − 1

𝑘 + 1) =
n
∑
k=1

1 +
n
∑
k=1

(1𝑘 − 1
𝑘 + 1) = 𝑛 + 𝑆n = 𝑛 + 𝑛

𝑛 + 1
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Exercice III (PYTHON - Tortue de Noël)
L’objectif de cet travail est de bien apprivoiser l’utilisation de fonctions en Python, en utilisant des dessins…

Q 9 Un peu de Python :

▶ Réponse :

Lien capytale vers la correction python du travail sur la Tortue de Noël
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https://capytale2.ac-paris.fr/web/c/a9ce-8815330

